next up previous contents index
次へ: 球面調和関数 上へ: 特殊関数 前へ: デルタ関数   目次   索引

ルジャンドル多項式

最初のいくつかの値:

$\displaystyle P_0(z)$ $\displaystyle =$ $\displaystyle 1,$ (C.2.1)
$\displaystyle P_1(z)$ $\displaystyle =$ $\displaystyle z,$ (C.2.2)
$\displaystyle P_2(z)$ $\displaystyle =$ $\displaystyle \frac{3z^2 - 1}{2}$ (C.2.3)
$\displaystyle P_3(z)$ $\displaystyle =$ $\displaystyle \frac{5z^3 - 3z}{2}$ (C.2.4)
$\displaystyle P_4(z)$ $\displaystyle =$ $\displaystyle \frac{35z^4 - 30z^2 + 3}{8}$ (C.2.5)

巾乗をルジャンドル多項式で表すと次のようになる:
$\displaystyle 1$ $\displaystyle =$ $\displaystyle P_0(z),$ (C.2.6)
$\displaystyle z$ $\displaystyle =$ $\displaystyle P_1(z),$ (C.2.7)
$\displaystyle z^2$ $\displaystyle =$ $\displaystyle \frac23 P_2(z) + \frac13 P_0(z),$ (C.2.8)
$\displaystyle z^3$ $\displaystyle =$ $\displaystyle \frac25 P_3(z) + \frac35 P_1(z),$ (C.2.9)
$\displaystyle z^4$ $\displaystyle =$ $\displaystyle \frac{8}{35} P_4(z) +
\frac47 P_2(z) + \frac15 P_0(z)$ (C.2.10)

直交性と完全性:
    $\displaystyle \int_{-1}^{1} d\mu P_m(\mu) P_n(\mu)
= \frac{2\delta_{mn}}{2m + 1}$ (C.2.11)
    $\displaystyle \sum_{l = 0}^\infty (2l+1)
P_l(\mu) P_l(\mu')
= 2\delta(\mu - \mu')$ (C.2.12)


next up previous contents index
次へ: 球面調和関数 上へ: 特殊関数 前へ: デルタ関数   目次   索引

All rights reserved © T.Matsubara 2004-2010
visitors, pageviews since 2007.5.11