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1

Introduction

The study of the structure of our Universe is one of the most active and exciting
research fields in cosmology. In these several years, new and sensational facts in
observational cosmology have been unveiled and our understanding of the large-
scale structure of the Universe is improving rapidly. There are various structures
in the Universe. The purpose of cosmological models is to explain the origin of
the structure and the processes to form the present structure. Among others, the
widely accepted view for the time being is that the small fluctuations of energy
density in the early Universe are amplified mainly by the gravitational interaction
and become the origin of structures in the present Universe. This view is called
as gravitational instability theory. This theory is favorable for number of reasons.
The small fluctuations of 2.75K cosmic microwave background radiation (CMBR)
recently detected by COBE satellite (Smoot et al. 1992) further support that the
primordial Universe is almost homogeneous but has the small fluctuations of order
1075,

Many people have been studying how the primordial fluctuations can be gener-
ated, but until now, we have not the fully convincing theories for this subject yet.
One of the possible theories is that the quantum fluctuations of some kind in the
early Universe become classical in the later Universe as many inflationary models
assume. Because the Universe is expanding, if we go back in time, the state of very
high density and high temperature is achieved where the presently known physical
laws break down. There is not any convincing model that can generate reasonable
primordial fluctuations using only processes which are well established in elemen-
tary particle physics. So the properties of primordial fluctuations do not seem to
be predicted just using known laws of elementary physics. Thus the primordial
fluctuations are most likely caused by unknown physics including quantum gravity

etc.



2 1. INTRODUCTION

Using gravitational instability theory, the structures in the present Universe can
be related to the primordial fluctuations. This fact arises the hope that the sufficient
observation of the large-scale structure of the present Universe as well as the accurate
detection of the fluctuations of CMBR can probe the unknown physics. To pursue
this possibility, the processes to form the observable astrophysical objects should be
clarified.

One of the popular probe of the large-scale structure of the Universe is the
distribution of galaxies. Recently, the redshift data of galaxies are widely collected
systematically and have been exhibiting rich structures in the Universe. In the next
several years, the redshift surveys will make rapid progress both in quantity and in
quality. Redshift surveys have been unveiling that the Universe has structures even
on scales ~ 100Mpc and is far from homogeneous. In the gravitational instability
theory, such large-scale structure should be formed by gravitational interaction.
For the formation of galaxies itself, however, the dissipative processes other than
the gravitational interaction concern much. Galaxies are not guaranteed to trace
the density field of the Universe and this fact makes the problem complicated. The
formation of galaxies is one of the most difficult issues which has been widely debated
so far. We can only say that the galaxies are the biased tracers of a density field
in the Universe and what kind of bias is subjected should be clarified in future
investigations.

The statistics of galaxy distribution are fundamental tools in the analysis of the
large-scale structure. To quantify the present universe, the statistical properties of
the galaxy distribution should be identified. Because of the observational limitation,
which statistic is efficient for analyzing is not obvious. Many statistical measures to
quantify the large-scale structure are proposed so far. In this Thesis, author’s recent
published work concerning the connection of statistics and dynamics of the universe
based on gravitational instability theory is summarized. Materials from more recent
work mostly concerning biasing and statistics are also included.

More in detail, this Thesis is organized as follows.

In chapter 2, the ingredients for the theory of large-scale structure are reviewed
briefly. After reviewing the evolution of background metric in section 2.1, the lin-
ear and higher order perturbation theories for collisionless non-relativistic fluid in
expanding background are summarized in section 2.2. The correlation functions are
the traditional tools to quantifying the clustering pattern of galaxies. Some basic

concepts of the correlation statistics are explained in section 2.3. We have never



had the definite theory for primordial fluctuations. Some candidates and its present
status are briefly described in section 2.4.

In chapter 3, the dynamical evolution of several statistical quantities are stud-
ied. First the observational and theoretical overview on cosmological correlation
functions is described in section 3.1.

Two-, three- and four-point correlation functions of galaxies in several cosmolog-
ical models are examined in detail by using cosmological N-body simulation data
in section 3.2. Particular attention is paid to see whether or not they obey the
hierarchical clustering ansatz which states that N-point correlation functions of
cosmological gravitating systems are written down as N — 1 products of two-point
correlation functions. In this analysis, different geometrical configurations of three
and four points are treated separately, which enable us to quantify for the first
time configuration-dependent behavior of the correlation functions up to the fourth
order. It is found that the hierarchical clustering ansatz holds only very approx-
imately, and that there is clear evidence against the ansatz especially in strongly
nonlinear regimes of fluctuations. The effect of peculiar velocity field makes the
correlation functions in redshift space obey the hierarchical clustering ansatz better
than in real space. Thus a straightforward analysis of redshift surveys would lead
to a misleading result in this sense.

In section 3.3, statistics of isodensity contours are considered. The gravitational
evolution of the genus and other statistics of isodensity contours of the density field
is derived analytically in a weakly nonlinear regime using second-order perturbation
theory. The effect of final smoothing in perturbation theory on the statistics of
isodensity contours is also evaluated. The resulting analytic expression for the genus
is compared with N-body numerical simulations and exhibits a good agreement.

In section 3.4, the distortion of the apparent distribution of galaxies in red-
shift space contaminated by the peculiar velocity effect is studied. Specifically the
expressions for N-point correlation functions are obtained in redshift space with
given functional form for velocity distribution f(v), and are evaluated for two- and
three-point correlation functions quantitatively. The effect of velocity correlations is
also discussed. When the two-point correlation function in real space has a power-
law form, £0)(r) oc r=7, the redshift-space counterpart on small scales also has a
power-law form but with an increased power-law index: ¢®)(s) o< s'=7. When the
three-point correlation function has the hierarchical form and the two-point corre-

lation function has the power-law form in real space, the hierarchical form of the
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three-point correlation function is almost preserved in redshift space. The above
analytic results are compared with the direct analysis based on N-body simulation
data for cold dark matter models. Implications on the hierarchical clustering ansatz
are discussed in detail.

In section 3.6, the peculiar velocity effect on the statistics of isodensity contours
is examined by linear theory. The statistics considered in this section are the three-
and two-dimensional genus of isodensity contours, the area of isodensity contours,
the length of isodensity contours in the 2-dimensional slice and the level crossing
statistics on the line. It is found that all these statistics in redshift space as functions
of density threshold of contours have the same shape as in real space. The redshift
space distortion affects only amplitudes of these statistics. The three-dimensional
genus and the area hardly suffer from the redshift space distortion for 0 < Qb=%/2 <
1, where b is a linear bias parameter. The other statistics are defined in one- or
two-dimensional slices of the sample volume and depend on the direction of these
slices relative to the line of sight. These dependences on direction of these statistics
provide ways to determine the density parameter of the universe.

In chapter 4, Technique concerning statistical analyses of the large-scale structure
of the universe in the presence of biasing in the structure formation is developed.
The diagrammatic method are formulated to calculate the correlation functions
of the nonlocally biased field from a generally non-Gaussian density field. This
method is based on generalized Wiener-Hermite expansion of the density field. The
present formalism has not only general applicability, but also practical significance,
too. To show the effectiveness of this method, we revisit the problems on biasing
that have been considered previously, i.e., various approximations for peak statistics
and hierarchical structure of correlation functions of locally biased field. Further
analyses which have not been possible so far on these problems can be performed
by our formalism. The gravitational evolution of primordial fluctuations or other
structure-forming processes can be described by nonlocal biasing, so can be treated
by our new formalism in principle.

The brief summary of previous work on this subject is presented in section 4.1. In
section 4.2, the generalized Wiener-Hermite functionals which play essential roles in
the analysis are introduced. Average value of any functional of a field is expanded by
Wiener-Hermite functionals. In section 4.3, the diagrammatic method to calculate
the mean density and N-point correlation functions of biased field is presented. More

compact expressions or methods of calculation are given when the biasing is local



or semi-local, that are defined below. The Fourier-space version of our methods is
also explained. The methods are applied to several theoretical problems in section
4.4. The first application is not relevant to bias, but the relation to Edgeworth
expansion is discussed. The Edgeworth expansion was recently used in analyses of
astrophysical density fields. The second application is on peak theory. We show that
our methods improve the technique which is available so far for peak statistics. The
next application is on hierarchical relations of correlation functions in the presence of
local biasing which is investigated recently by Fry & Gaztanaga (1993; and references
therein). We show our method complements their results. The last application is on
the gravitational nonlinear evolution as a nonlocal biasing. We apply our methods
to the calculation of three-point correlation function induced by gravity.

Finally, we present the summary in chapter 5. Appendices are devoted to the

details of derivation, calculation and proof.
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Ingredients of the Analyses

2.1 BACKGROUND COSMOLOGY

The fundamental assumption in standard cosmology, called cosmological principle,
is the global homogeneity and isotropy of our Universe. As described in the pre-
vious chapter, the inhomogeneity is seen on scales of even about 100 Mpc, but on
scales much larger than 100 Mpc, observations of the isotropy of the CMBR and
the X-ray background and the number counts of radio sources, support the cosmo-
logical principle. When the spatial hypersurface is homogeneous and isotropic, one
can find (e.g., Weinberg 1972) coordinates with the following Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric:
dx?

1 — ka?

ds? = dt* — az(t) + 2%d0? + 2% sin? 0d¢?| . (2.1.1)

In this coordinate, ¢ is called the proper time and @ = (z,6, ¢) are called comoving
coordinates. In the space with this metric, £ = 0, £ > 0 and & < 0 corresponds
to the spatially flat Universe, the closed Universe with positive curvature and open
Universe with negative curvature, respectively. The behavior of the expansion factor
a(t) is determined by the Einstein equation.

The stress-energy tensor T, should be diagonal so as to have the solution of
the Einstein equation for the metric of equation (2.1.1), and, because of the spatial
homogeneity, the spatial components should be identical. Thus, 7}, has the same

form as for the perfect fluid with energy density p(¢) and pressure p(?):

7%, = diag(p, —p, —ps—p). (2.1.2)

The Einstein equation reduces to the following two equations:

s\ 2
H? = (3) _ GG AR (2.1.3)

a 3 3 a2

6
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%(pcﬁ) = —3a’p, (2.1.4)
where (7 is a gravitational constant, A is a cosmological constant and dot denotes
the time derivative, d/dt. In the FLRW Universe, the two objects which are at an
interval of r = ax in a physical unit and both of which do not move with respect to
the background metric (¢ = 0) move apart each other at a velocity v = ax = Hr
in a physical unit. This expansion rate H is called Hubble parameter. The present
value of the Hubble parameter Hg is not accurately determined but is estimated
roughly as

Hy=100hkm s™" Mpe™, 04 <h <1 (2.1.5)

The recent observations favor the higher value h ~ 0.8 (e.g., Pierce et al. 1994;
Freedman et al. 1994), but the uncertainty remains in any case.

Owing to equation (2.1.3),

k=a’H* (04X —1), (2.1.6)

where
0= i%jp, (2.1.7)
A= 322. (2.1.8)

are the density parameter and the dimensionless cosmological constant®. Therefore,
Q4+ X =0, >0, <0 correspond to spatially flat Universe, closed Universe with
positive curvature, and open Universe with negative curvature, respectively. The
present value of the density parameter {1y is also not accurately determined but only
the rough estimation as 0.2 < ¢ < 1 are available. As for the cosmological constant,
we could not say more than that the present value of the dimensionless cosmological
constant Ag is of order unity or less. It is hopeless to determine observationally the
geometry of the Universe from the value Qg+ Ag and we proceed leaving £y, Ao, Hy
as parameters. The present value of the expansion factor ay can be fixed arbitrarily
choosing an unit of length of the present Universe. The conventional one is chosen
so that the constant k takes the value +1,0 (c.f., equation [2.1.6] at the present).
Other choice is ap = 1. The latter choice is also popular, but note that & is not
restricted to £1,0 generally in this choice. In this Thesis, aq is not fixed but is left

explicitly in equations below.

*Note that dimensionless cosmological constant A is no longer a constant but varies with time.
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The equation (2.1.4), together with the equation of state for the content of the
Universe, determine the behavior of p as a function of a. When the Universe is
matter-dominated (p = 0), then p o a™*, when radiation-dominated (p = p/3),
then p oc a™.

In cases of vanishing cosmological constant, A = 0, from equation (2.1.6),

2

0t —1="2 (051 1), (2.1.9)

pa?

4. or non-relativistic matter-dominated

In the radiation-dominated Universe, p o a~
Universe, p o< a2, this relation shows @ = 1 is an unstable fixed point: as a grows,
a small deviation from {2 = 1 becomes large. The case ) =1 is special because only
in this case the density parameter does not depend on time. This special Universe
with @ =1, A = 0 is called Einstein-de Sitter Universe.

In this Thesis, the Universe dominated by collisionless, non-relativistic matter is

focused on. In such a situation, the Friedmann equation (2.1.3) reduces to

drR\* Q
(E) = ﬁo + AoR% + (1 — Qg — Ao), (2.1.10)
where the dimensionless quantities,
=% 7= Ht, (2.1.11)
ao

are introduced. This equation (2.1.10) is the same as a energy equation for a particle
moving on a one-dimensional line under the potential —Qy/ R — \qR?, having energy
of (1 —Qy — Ag). The solution of this equation is generally represented by elliptical
integrals. In some special cases, equation (2.1.10) is integrated elementarily. The

results are summarized below.

a) Einstein-de Sitter Universe, Qg = 1, Ay = 0:

a(t) (3 )2/3
— = | =Hyt . 2.1.12
ao 2 0 ( )
b) Open Universe without cosmological term, Q5 < 1, A\g = 0: in parametric
representation,
Cl(t) QO
= 1 - 0 2.1.13
ao Q(Qo—l)( cos )7 ( )
Q
Hot = ———2— (0 —sin ). (2.1.14)

2(Qp — 1)2
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c) Closed Universe without cosmological term, Q¢ > 1, A\ = 0: in parametric

representation,
Cl(t) QO
= ho—1 2.1.1
ag 2(1 — Qo) (COS )7 ( 5)
Hot = L sinh § — 0). (2.1.16)

20— )

d) Flat Universe with cosmological term, Qo 4+ Ay = 1:

1/3
a(t) — (1 QOQ ) sinh?/? (g 1— QOHOt) (o < 1,0 > 0), (2.1.17)
g — 3L

Cl(t) _ QO 1/3 - 2/3 3
@ (QO_1) s (5 Qo—lﬂof) (Q0>1,X <0). (2.1.13)

2.2 PERTURBATION THEORY FOR DENSITY FLUCTUATION

The density fluctuation evolves by self-gravity in the background geometry described
in the previous section after non-relativistic matter dominates in the Universe.
We assume that the dominant content in the Universe is approximated by self-
gravitating Newtonian fluid with negligible pressure. The evolution equations of
density fluctuation are continuity equation, Euler equation of motion and Poisson

equation of gravitational field (e.g., Peebles 1980):

§4+V-v+V-(6v) =0, (2.2.1)
v+2Hv+ (v-V)v 4+ VP =0, (2.2.2)
V2o — gHQQ(S, (2.2.3)

where @, v(@,t), (@, t) are position, peculiar velocity, peculiar potential in comov-
ing coordinate, respectively, which correspond to ax, av(x,t), a*®(x,t) in physical
units, respectively. Dot denotes time derivative and V = d/dx denotes and spatial
derivative with respect to comoving coordinates. Density contrast ¢ is defined by

5, 1) = W (2.2.4)

where 7(t) is a mean density per physical volume, which is denoted simply by p(?)
in the previous section. Instead, p(x,?) means local density per physical volume.

Using equations (2.2.1) and (2.2.2), one finds

§+2H6 — SHQQ(S — gHm&? + V-V +9;0; [(1 + 8)vivj], (2.2.5)
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which turn out to be useful below. The inversion of the Poisson equation (2.2.3) is
standard,

(2, 1) = gfﬂfu:]5¢nt ———fﬂfp/dB' (2.2.6)

o
These nonlinear field equations could not be solved generally and exact solutions
are known only for extremely limited cases as in spherically symmetric perturba-
tion (Peebles 1980). So we need approximations to integrate these equations. One
way is to integrate the system numerically as N-body simulations. While numerical
simulations provide almost only way to investigate the nonlinear process reasonably,
analytic approximations to the problem are useful in some cases. When ||, |v] < 1,
the equations are solved approximately. In linear perturbation theory, the nonlinear
terms other than first order in the equations are neglected. In higher order pertur-
bation theory, the weak nonlinearity is taken into account by solving the equations

using perturbative expansion as described below.

2.2.1 Linear theory

Equation (2.2.5) is linearized as

S+2H5—§H%w:o. (2.2.7)
This equation does not couple deferent points, so the fluctuation evolves indepen-
dently on each points. The solution of second order differential equation (2.2.7) is
a linear combination of growing mode D(t) and decaying mode D'(t). The growing
mode dominates at later epoch, so the solution of the linear perturbation theory is
approximated by

5(1)(a3,t) = D(t)e(). (2.2.8)

The growing mode of equation (2.2.7) is generally given by (Peebles 1980)

1 dx
Dt Q/
e AV ES vorw e pay vzl

(2.2.9)

where () and A are time-dependent parameters. The lower limit in the integration
is set to be zero because we are interested in the Universe which has the beginning
and are now in a expanding phase. In some special cases considered at the end of

the last section, the above equation expressed differently.
a) Einstein-de Sitter Universe, Qg = 1, Ay = 0:

D o a o 127, (2.2.10)
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b,c) Universe without cosmological term, Ay = 0:

D x aF (1,2, 5;1 — Q—l) (2.2.11)
. { 1+3/2+3/(1+2) /e In(vVTHz —T), (Q<1) (221
—143/z—3,/(1 —x)/a3tan™" /o /(1 — ), (Qo > 1)
where z = |Q71(t) — 1] = |5 = 1|a/aq.
d) Flat Universe with cosmological term, Qg + Ao = 1:
D x aF G 1, %;1 — Q—l) . (2.2.13)

In the above list, F'(a, 3,7; 2) is the Gauss” hypergeometric function.
As for the velocity field, linearized equation (2.2.2) can be integrated using equa-
tion (2.2.7), resulting in

o = _ya-im y F@) g p g (2.2.14)

a?

The growing mode of this equation is

vW(@,t) = —fHDVA  e(2), (2.2.15)
where T D
n
t) = . 2.2.1
iy = Sk 2216
From equation (2.2.9), f(t) is explicitly given by
0 1 da -
Q) =-1-5+A+|[ 2.2.1
F8,4) 2+ —I_[O(Q/x—l—)\x?—l—l—ﬂ—)\)B’/? ( )
[ s 4+ A/30, (005015, 0SA<1) oo
T QM+ A1 4+9/2)/70. (0.03<Q <2, —5< )\ <5) -

The fits in equation (2.2.18) are due to Martel (1991) and Lahav et al. (1991),
respectively. This function depends on cosmological constant very weakly. In the

cases for vanishing cosmological constant and for flat Universe,

F(2,3/2,7/2;1 = Q)

F(9,0) = QF(1,3/2, T~ 0°s, (2.2.19)
_ F(4/3,5/6,11/6;1 — Q)
f@,1-9) = QF(1/3,5/6,11/6;1—Q)
0.6 1 1
~ 0% - 1= 201+ 0)), (2.2.20)
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The fit in equation (2.2.19) is due to Peebles (1980) and the fit in equation (2.2.20)
is an analogy of the fit in equation (2.2.18).

The growing mode of linear velocity field is irrotational
vV x oW =0, (2.2.21)

so the vorticity in the present Universe could not be generated by linear theory.

2.2.2 Higher order perturbation theory

The weakly nonlinear effect can be evaluated by solving the system of differential
equations (2.2.1)-(2.2.3) perturbatively adding the higher order terms to the linear

solution. First, we consider the following perturbative expansion:
6= 60 v=3 o, (2.2.22)
n=1 n=1

where 6§, v are of order (5(1))”. Then the differential equations can be solved
order by order for each terms in equation (2.2.22). That is, the following equations

should be solved for n = 2,3,4, ..., one by one.

n—1
8 + Vv 4 3V (§Welnh) =0, (2.2.23)
k=1
n—1
v+ 2H0™ + 3 (0™ V)P L Vol = o, (2.2.24)
k=1
. . 3 3 n—1 n—1
60 4 2H6M — 51{?95(”) = 5H?Q 3 eBs=h 15 v L v elnh)
k=1 k=1
n—1 L L n—1k-1 ol L
+ 3 0:0; o]+ 303 00, [s00 0] (2.2.25)
k=1 k=1 [=1
where ;
o = iHQQA‘lé(”). (2.2.26)

Two of equations (2.2.23) — (2.2.25) are independent. Although there are inde-
pendent solutions for 6" and v, only the leading growing modes are left in the
following. In the perturbative solution by this procedure, the velocity field is still

irrotational in the leading growing mode:
V x o™ =0, (2.2.27)

so the vorticity in the present Universe could not be generated by weakly nonlin-

ear effect. It would be generated by strongly nonlinear effect. This is proved by
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induction as follows. The case n =1 is linear theory result (2.2.21). For n > 2, the

rotation of equation (2.2.24) reduces to

a n—1
5 [aQrotv(”)] =a*)_ [(rotv(k) V)" — (0 F . Vrote®) — rote™ (V- v(”_k))] .
k=1

(2.2.28)

To derive this equation, note that d;v; — d;u; = ¢;;(rotv);. The right hand side

in equation (2.2.28) does not contribute to the leading time-dependence by the

assumption of induction, so rotw™ also does not contribute to the leading growing
mode. Thus equation (2.2.27) is proved for leading growing mode

The irrotational velocity field can be represented by v(® = VA~10") where

0" = V- v™ is a velocity divergence. At this stage, it is convenient to work in the

Fourier space:

3
8 (@, t) = ok ek st (ks 1) (2.2.29)
? (27‘(’)3 ) 2
Pk o
0" (2, 1) :/(%)Be”‘"wew(k,t). (2.2.30)

The Fourier-space representation of equations (2.2.23) — (2.2.25) are as follows:

()

o (k) + 0™ (k)

d3p d3 / k'P’~ n—
+ Z/ 2765 (p 4+ p' — k) oz SV (P =R (p'y =0, (2.2.31)
+(n) ~ 3 .
0 %HJHW%m+§HQW%m
3 d3 / 5
+Z/ 264 (p+ p' — k)
k-p)P-P) sty -
X%W@)@( Dp) =0, (2.2.32)
(n) (n) 3 g
o (k) +2H5 (k) — SH Q6 (k) =
n—1 d3p d3 / 3 p-p’ B -
8 k) |2HQ (1 §9) () G—) (
kzl (27)? )( ) 6b(p+ P~ )lg ( T (p) ()
n—1k—1 d3 d3 / d3 " 5a
2 6 ! 14 _ k
F XX [ ity e 2 e P B k)
k'p/k'p//"’ o ~
< PP () (2.2.33)

The solution of the second order perturbation theory is, using (2.2.33) and
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(2.2.31),
50kt = D [ S 0 6h(py + .~ RIPpy 2P (P
(2.2.34)
5(2)(k7t) = Dz/ éf)lza (25)23(277)35%(171 + Py — k)Q2(py, P2, 1)E(P1)E(Py),
(2.2.35)

where

1 . 1 . 2
%@M%ﬂ:50+m+£L&(&+£g+§O—KW?L&)Qz%)

2pip2 \ P2 h P1P2
2
Q2(py,pyut) = —H f C+1;1 P (}2+}2)+(1—C) (pl pz) (2.2.37)
PipP2 \P2 P P1pP2

In the above expressions, K (1) = F//D? and C(t) = F/(2DD) are defined using the

growing solution F'(¢) of the following ordinary differential equation:

. . 3 3
F+2HF — EHQQF = 5HQQDZ. (2.2.38)

The growing mode of this equation can be expressed by a closed form (Matsubara

1995b) as

QO A1
l1 3@], (2.2.39)

KQM\N==-2_— -2
X( 7) 2U3/2

1 1
C(Q,N) = — {—39 + s 24 4Usp = 3(2 4 Q= 20)Us } (2.2.40)

8f (Us2)?
where )
U (Q,0) :/ de[Q)a + Aa? +1—Q — A (2.2.41)
0
In Einstein-de Sitter, Friedmann and flat models,
0.(1,0) = — (2.2.42)
o 9 - 1—|—Oé7 L
1
U,(Q,0) = H—@F(l,a,a—l—Q,l - Q), (2.2.43)
1 a+4
Q11— =—F(l,a,——;1 -0 2.2.44
Va1 =9) = = F (La, 5551 - 0)). (22.44)

where [ is the hypergeometric function. Moreover, in Friedmann models, Us/, and

Usjy are actually elementary functions (Bouchet et al. 1992).
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For practical purposes, equations (2.2.39) and (2.2.40) are accurately approxi-

mated by
K~ %Q—l/zao _ % (1 _ gﬂogm Q) , (2.2.45)
A
O~ %Q—n/zoo - (1 . g)\loglo Q) : (2.2.46)

within maximum error 0.6% for both for —1 < log;, 2 < 0 and 0 < A < 1. Quite
obviously from this fitting, dependence on parameters 2 and A is weak (Bernardeau
1994; Bernardeau et al. 1994; Matsubara 1995b). In fact K and C for the above
ranges of 0 and A are different from the Finstein-de Sitter values within 8% and

14%, respectively. In the Einstein-de Sitter Universe, or ¢ — 0, the solution of
equation (2.2.38) is F' = 3D?/7, thus,

5 : 2 p,\°
5. B pz(ngr@)Jr_(p pz)
7 2pip2 \p2 P 7 P1pP2

3 PP 4 (p-p,\°
gz )
7 2pip2 \ p2 P1 7 Pip2

This expression is exact for Einstein-de Sitter Universe, and is an approximation for

Py(py,py) = : (2.2.47)

Qa2(py,py) = —H f . (2.2.48)

the general Universe.
The perturbation of order higher than three is similarly obtained but is compli-

cated. In the Finstein-de Sitter Universe, one can see

8 o 23, (2.2.49)
v o 2371 (2.2.50)

by induction and the dependence on space and time decouples in each terms in
perturbative expansion, so the calculation is relatively simplified. The result of
higher order solution is expressed by recursion relations (Goroff et al. 1986). The

solution takes the form,

d3p1 “ e d3pn
(2r)*  (27)°
X Ro(Pyrs-- s Pa EPy) - E(py), (2:2.51)
d3p1 [ d3pn
(27)3 (2m)3
X Su(Pys s P DEP) - E(p,),  (2:2.52)

Sk 1) = 10 [ (2064 (py + -+ p, — k)

0k ) = — 1 [ (20 6h(py + -+ p, — k)
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and R,, S, is determined by the following recursion relations

9
"(ky,... k) =
il b = S =)
”Z_l m+3\k-(ki+ - +k,
. [< 3 ) |k(1—|1—_|_k |2)Rgl—m(km-l-lv'"7kn)S;n(k17...,km)
m=1 m

Loyt de) (kg o+ k)
2" Ty 4+ kPl + -+ k2

< S ey k) S (Rgrs o ken |, (2.2.53)

2
S (K, k) = ?”R;(kl,...,kn) -

gk-(k1+---+km)
oy + -+ k|2

m=1

R (ki k) (e, k), (2.2.54)

and initial values R} = 1, 57 = 2/3 and the symmetrization procedure,

1
Rokr,.oka) = Y Rk, kyn)),s (2.2.55)
all perm.:p *7°
1
all perm.:p *7°

In equations (2.2.53), (2.2.54), k = ky + --- + k,, and sums in equations (2.2.55),

(2.2.56) are taken for all n-permutations.

2.2.3 Lagrangian perturbation theory

So far, the dynamical variables are defined in Eulerian space. There is another
perturbative treatment that is defined in Lagrangian space (see, e.g., Buchert 1994;
Bouchet et al. 1995), which is called Lagrangian perturbation theory. This theory
considers motion of mass elements labeled by unperturbed Lagrangian coordinates
q. The comoving Eulerian position of mass element gq at time ¢ is denoted by «(q,1).

The displacement field ¥(q,t) defined by
z(q,t) = q +¥(q.1), (2.2.57)

is a dynamical variable in this formulation. Density contrast and a velocity field are

derived from a displacement field as

S[z(g,t),1] = JL — 1, (2.2.58)

v[z(q, 1), 1] = &(q,1) = ¥(q,1), (2.2.59)
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where J = det[0z;/0q;] = det[é;; + 0V;/0q;] is the Jacobian from Lagrangian space
to Eulerian space. A dot denotes time derivative fixing Lagrangian coordinate q,
so should not be confused with the Eulerian time derivative in equations (2.2.1)-
(2.2.3). These Eulerian equations (2.2.1)-(2.2.3) are transformed to the Lagrangian

equations governing displacement field as

. . 3
JV, - [+ 2HY] + 5HQQ(1 —J)=0, (2.2.60)
V., x [& +2HW] = 0. (2.2.61)

Again, a dot denotes Lagrangian time derivative and V,, is the spacial derivative with
respect to Eulerian coordinates @, so (V,); = J—li»j(vq) where jij are cofactors

of the Jacobian J.

In usual treatment of Lagrangian perturbation theory, one assumes an additional

7

condition, i.e., vorticity-free condition:
Vo xv=V,xW¥=0. (2.2.62)

This is not unreasonable requirement because vorticity is expected to be diluted
by expansion before ‘turn-around’ in some sense (Peebles 1980). The condition
(2.2.62) is a sufficient condition for dynamical equation (2.2.61) (Buchert 1992), so
the solutions with vorticity-free condition are in a subclass of the general solutions
[rotational perturbation is argued by Buchert (1992) and Buchert & Ehlers (1993)].
This subclass is achieved if one limit the initial condition to irrotational field be-
cause irrotational velocity field at one time remains irrotational at later times from
Kelvin’s circulation theorem. Therefore, equations (2.2.60) and (2.2.62) are solved
perturbatively for displacement field & = (M) 4 @@ 4 ... keeping only terms of
leading time-dependence. For irrotational initial displacement field, the result, up
to second-order [see Buchert & Ehlers (1993) and Bouchet et al. (1995) for detail],

18

v = _D(HVA (=), (2.2.63)
1
o@ _ —SEHVATY (wol) —wel). (2.2.64)
i#j

The first-order solution is equivalent to the Zel’dovich approximation (Zel’dovich
(1970; 1973). The factors D and K are the same quantities in Eulerian perturbation
theory.
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2.3 CORRELATION STATISTICS

One of the very important issues in cosmology is to investigate the statistical prop-
erties of the density field in the Universe. The conventional tools to represent the
statistical properties are correlation functions of the field. The set of correlation

functions of all orders have the complete information of the statistics of the field.

2.3.1 The two-point correlation function and the power spectrum

The two-point correlation statistics is relatively popular in cosmology. Two-point

correlation function of smoothed field 6(x) with zero-mean is defined by
£, 2) = (5(21)6(22). (23.1)

When the field is statistically homogeneous, this quantity is a function of &, — @,
and when the field is statistically isotropic, this quantity is a function of |&; — x|
Thus, the above quantity is denoted also as {(@1 —@3) or £(|®1 —@2|) for statistically
homogeneous and isotropic field. The average (---) means mathematically the one
for ’ensemble of Universes’. Of course we can never observe another realizations of
statistically equivalent Universes not of ours, so, observationally, only the spatial
average can be done. These two averaging are equivalent if ergodic theorem holds,
but this theorem have not been proven for general situation. It is known that when
the field is an Gaussian random field, the ergodic theorem holds if and only if its
power spectrum is continuous (Adler 1981). We assume that the ergodic theorem
holds in our Universe in comparing the theories and observations.
The two-point correlation in Fourier space defines the power spectrum P(k)
through
(B0 )3(0ka)) = (2085 (ks + ko) Pk, 232)
where delta-function must appear for the homogeneity of the space (this can be
seen by that ¢ is a function of @, — @,). The power spectrum depends only on the
magnitude of ky for the isotropy of the space (this can be seen by that ¢ is a function
of &1 — @3]). Approximating the Universe by a cube of volume V imposed periodic

boundary condition,

P(k) = V=Y|6(k)[?), (2.3.3)

where the reality condition,

5% (k) = 6(—k), (2.3.4)
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is used. The two-point correlation function £(|®|) as a function of @ and the power
spectrum P(|k|) as a function of k is related by three-dimensional Fourier transforms

(Wiener-Khintchine relation):

P(k) = / Pre=*Te(r) = 4n /0 h xzdeiz f“’g(x) (2.3.5)
>k . 1 00 sin kx
f(:z;):/(ZW)BekaP(k): ﬁ/o B da=P(k) (2.3.6)

Instead of equation (2.3.3), sometimes the power spectrum is defined by P(k) =
(|6(k)|?). The latter definition is unnatural because it depends on the volume of the
Universe for P(k) of our notation is independent of the volume; see equation (2.3.5).

The same argument is seen in Bertschinger (1992).

2.3.2 Higher order correlation functions

Not only the two-point correlation function, or equivalently the power spectrum,
determines all the statistical property, of course. All the statistical property is
expressed as a probability distribution functional P[é]. The expectation value of an

arbitrary functional of the field ¢ is, using distribution functional,
(F[8]) = /[d&]P[&]F[(S]. (2.3.7)

To investigate the distribution functional directly by observation is awkward and
almost impossible. We need other statistics which is equivalent to the distribution
functional.

The infinite dimensional Fourier transform of the distribution functional is a

moment generating functional Z[.J]:

2] = <eXp [—@' / deJ(w)(S(a;)D (2.3.8)
e

N=0

/d3x1 Py (@) J(@n)(8(2) - b(ay)). (2.3.9)
As seen from (2.3.9), the set of all the moment

p M @y, en) = (8(xy) - b(en)), (2.3.10)

determines Z[.J]. The inverse transform of equation (2.3.8),

Plo) = [ [g—ﬂ 21 exp [@'/deJ(w)(S(m)] (2.3.11)
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determines the distribution functional from the moment generating functional. Thus,
the set of all the moment determines the statistical property of the field 6 completely
and all the statistical quantities are expressed by moments (2.3.10).

It is popular to use the connected N-point correlation function
5(N)(w17 cen) = (0(@r) 6@ ) (2.3.12)

rather than mere moments. This quantity is defined by eliminating the lower order
contribution to the N-moment and represents the true N-point correlation. Explic-

itly, it is defined by following relations iteratively:

uiy =€), (2.3.13)
ik = &3, (2.3.14)
ity = €D 4 e@eld) 4 ePe@ e, (2.3.15)

ILL52345 512 5345 + 513 5245 + 514 5235 + 515 5234 + 523 5145
+ 524 5135 + 525 5134 + 534 5125 + 535 5124 + 545 5123 + 5%32’)457 (2316)

(2)

where the notation ujy; = @ (@, 22) etc. are used. The N-th moment is determined
by connected correlation functions of order less than or equal to IV, so the set of all
the connected function has complete information of statistics of the field 6. There
are beautiful relation, called cumulant expansion theorem (e.g., Ma 1985), that is
widely used in statistical theory and quantum field theory. This theorem states
that 'the logarithm of a generating functional of moments, In Z[.J], is a generating

functional of connected correlation functions’, i.e.,

In Z[.J Niizo ]\Z[)’ /d3x1 PanJ(®) - J(@n)(6(2y) - d(TN))e.  (2.3.17)

Since this theorem is very important, the proof is presented in Appendix A. This
theorem simplify the statistical calculation concerning connected correlation func-

tion, and plays an essential role in later part (chapter 4) in this thesis.

2.3.3 Gaussian random fields

Fields with distribution in which connected correlation functions of order more than

or equal to three vanish are called Gaussian random fields. The moments of a
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Gaussian random field é(@) are given by

(8(z1)6(m2)) = &(71, @), (2.3.18)

(8(21) - 8(2anpn)) = 0, (2.3.19)

<5(x1)---5(w2n)>=ﬁ Y (8(@p1))8(@p(2))) - (8@ p(2n—1))8(@ p(an) )
o (2.3.20)

The distribution functional of Gaussian random fields are, from the cumulant ex-
pansion theorem (2.3.17) and equation (2.3.11),

! L S dPayd(e ) @y, 2 x
P[5]:M€XP [—g/d 1d°x96(21 )6 (21, 22)0( 2)], (2.3.21)

where [det(27€)]"/? is a normalization factor,

Jaei(2rE) = [1dé]exp [—% / d3:1;1d3:1;25(w1)§_1(w1,;1:2)5(;1:2)] L (2322)

and ¢! is the inverse (or Green’s function) of the two-point correlation function

which satisfies

[ dyéz—yh ¢ (ly - =) = b — 2), (2:3.23)
or, equivalently, it is defined in Fourier space as
Bl ek
-t = : 2.3.24
12D = | Gy P (2:3.24)
The distribution functional in Fourier space is, from (2.3.21),
- 1 1 &k |6(k)|?
5 -5/ 2.3.2
Pl ]ocexp( 2] Gy PR ) (2.3.25)

where the reality condition (2.3.4) is taken into account. This expression implies
that each Fourier modes are distributed independently. To see the precise form of
this property, it is convenient to move in the discrete space. The real space and
the Fourier space is approximated by the discretized lattice in which the real space
is the finite box of volume V = L? imposed by periodic boundary condition. The
lattice spacing in real space is Az = (V/N)'/3, where N is the number of total lattice
sites. The lattice spacing in Fourier space is given by Ak = 27 /L. The integral is

represented in this discretized space as

[ de— a0y = %Z, (2.3.26)

€x

d*k Ak 1

/W — Y (5)3 = Vzk:. (2.3.27)

k
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In fact, the treatments of the functional integrations above can be defined only in
those discretized space and the continuum limit L — oo, N — oo, V/N — oo is
assumed. Thus, the decoupling of modes in equation (2.3.25) is described precisely

in this discretized space and the distribution function of each mode g(k) is

P(g(k)) X exp (— Lfgf()]f)) : (2.3.28)

From the reality condition (2.3.4), all the Fourier modes are not independent but,
e.g., only the upper half of k-space, k. > 0, (uhs) is sufficient. Such double contribu-
tions in exponential of equation (2.3.25) compensate the factor 1/2. Corresponding

two kinds of representation,

(k) = Red(k) + 1 Iméo(k) (2.3.29)
= [8(k)| "™, (2.3.30)

the distribution (2.3.28) reduces to, including normalization factor,

P(Red(k), Imd(k))dRed(k)dImé (k)
L (_(Reg(k))z—l—(lmg(k))?

) dReb(k)dImd(k),(2.3.31)

~ 7VP(k) VP(k)
P(Ig(k)lvf(k))dlg(k)ld{(k)
- QV";(Z;J exp (—%) d|5(k)|@ (2.3.32)

One of the characteristic feature of Gaussian random fields is that the phase (k)
of each mode g(k) distribute randomly as seen from equation (2.3.32). The un-
recommended notation P(k) = <|g(k)|2> can simplify the above distribution, but
it is natural that the volume V' appeared explicitly in the discretized space. If we
adopt this unrecommended notation, we have to deal with the volume of the space
explicitly in the representations in the continuum limit.

The Gaussian random fields are expected to appear in various situations because
of the central limit theorem, and it is the key distribution of the fields. In addition,
standard inflationary models predict that the primordial distribution should be a
Gaussian random field (Guth & Pi 1982; Starobinskii 1982; Hawking 1982; Bardeen,
Steinhardt & Turner 1983). From these things, and for simplicity, the primordial

fluctuation of our Universe is often assumed to be a Gaussian random field.
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2.4 THE PRIMORDIAL SPECTRUM

In this section, some models are described briefly concerning what type of fluctuation
is expected when the gravitational force became the prominent source of evolution

of the structure.

2.4.1 Harrison-Zel’dovich spectrum

Although there are no guarantee that the primordial fluctuation is a Gaussian ran-
dom field, let us assume that standpoint here. Then, the degree of freedom of the
primordial fluctuation reduce to the functional form of the primordial power spec-
trum, P(k). We do not know the definite feature of the origin of the primordial

fluctuation, it is common to assume the simple power-law spectrum
P.(k) = Ak™, (2.4.1)

which has not characteristic scales. This assumption greatly reduces the degree of
freedom of primordial fluctuation to two parameters, amplitude A and power-law
index n.

The index n should not be too small or too large. For smaller values of n, rela-
tively large fluctuation on small scales produces excessive black holes in the Universe.
For larger values of n, relatively large fluctuation on large scales breaks the global
homogeneity and isotropy and produces excessive CMBR anisotropy. If n = 1, these
constraints are balanced with the present Universe (Harrison 1970; Zel’dovich 1972).
Such primordial spectrum, P(k) o k is called as Harrison-Zel’dovich spectrum or
scale-invariant spectrum and considered to be important. The Harrison-Zel’dovich
spectrum has a property that the amplitude of fluctuation of the scale which enters
the horizon has the same amplitude for every scales. The simpler inflationary models
predict the Harrison-Zel’dovich spectrum. Harrison-Zel’dovich spectrum itself does
not fix the overall amplitude A, it is determined by the fluctuation of the present
Universe or the CMBR anisotropy.

The primordially scale-free spectrum of the form (2.4.1) is deformed for the
radiation-dominated epoch. The fluctuation on scales which enter the horizon in
the radiation-dominated epoch could not be amplified because of the pressure of
radiation (the Jeans length is about the horizon size for radiation-dominated epoch)
while the fluctuation on super-horizon scales is amplified. The deformation of scale-

free spectrum by this effect has the characteristic scale that is the horizon scale
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27 [kt eq (FH oq = 0.64Q0h*Mpc) at the time matter start to dominated the Universe
(equal time). The power spectrum on k < ky., is amplified independently on
wavenumber and keeps its shape, P(k) o« k", but on k > kpy.eq, the fluctuation
can be amplified only before entering the horizon. Smaller scales enter the horizon
earlier, so the amplitude on smaller scales is suppressed compared with that on
larger scales. The asymptotic form of the power spectrum by this deformation effect
is P(k) o< k" " on k < kyeq In addition, according to the main component of
matter in the Universe, another process to damp the amplitude of fluctuation on
some smaller scales can work.

Thus, by the decoupling time, at which the interaction between baryons and
radiation effectively breaks, the power spectrum of density fluctuation suffers from
deformations. After the decoupling time, the density fluctuation evolves by self-
gravitation alone. Aslong as the fluctuation is in linear regime |6| < 1, the spectrum

does not deformed and only the amplitude is increased according to equation (2.2.8).

2.4.2 Dark matter and the initial spectrum

There exists a lot of invisible matter which we could not observe directly. Actually,
it is known that the most of the mass in our Universe is in the form of such 'dark
matter’. What is the dark matter is one of the fundamental issues in astrophysics
and cosmology which has not been solved yet.

The natural idea is to identify the dark matter with the usual baryons which is
well known to us. This model is called as a baryonic dark matter (BDM) model.
This model, however, has many problems. The very strict constraint to this model
is from a theory of primordial nucleosynthesis and observations of the abundance of
light elements in the Universe which predict (Olive et al. 1990; Walker et al. 1991;
Smith, Kawano & Malaney 1993)

0.010 < Qph® < 0.015, (2.4.2)

where g is the contribution of the baryons to the density parameter at present. This
constraint is strict because the observations suggest 0.2 < Qg < 1. Moreover, in the
BDM model, fluctuation on scales smaller than the size of typical clusters of galaxies
are erased by a mechanism called Silk damping: at about the decoupling time, the
mean length of photon diffusion become gradually longer. In this process, photons

drag baryons and the baryonic fluctuation is erased. To obtain the fluctuation on
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scales about galaxies in BDM model, the fluctuation on large scales collapse first,
and then it should be segregated to galaxies (pancake model). It is doubtful that
such top-down scenario, in which the structures on smaller scales are generated from
structures on larger scales, can work well. Furthermore, the baryonic fluctuation at
decoupling time on scales of large-scale structure (super-cluster scale) of present day
or on smaller scales than that is constrained from CMBR isotropy to be <2 x107*
(e.g., Uson & Wilkinson 1984; Readhead et al. 1989; Smoot et al. 1992). The
amplification of the fluctuation after decoupling is roughly proportional to scale
factor, so in the BDM model, the fluctuation can be amplified at most by 1000 times
from decoupling time to present day. This can not explain the observed fluctuation
on such scales at present. The mass fluctuation at decoupling time should be larger

than the fluctuation of baryons, so non-baryonic dark matter is needed.

As the non-baryonic dark matter, the hot dark matter (HDM) model and the
cold dark matter (CDM) model are considered frequently. In the HDM model,
the dark matter particles decouple from thermal contact with each other when the
particles are relativistic. The light neutrinos of mass m, = 10-100 eV are candidates
of HDM particles. In this model, the neutrino is relativistic until equal time and
the fluctuation on scales smaller than 27 /kgeq is smoothed out by the motion of
neutrino (free streaming damping). By an accurate estimation (Bond & Szalay
1983), the resulting deformation of power spectrum is fitted by

P(k) = Ak"10720/k)° (2.4.3)
where k, = 0.49Qh?Mpc™" is a neutrino damping scale. In HDM model, the sharp
cut-off of fluctuation on about 254~ 'Mpc appeared if Qyh ~ 0.5. Thus the structures
should form by extreme top-down scenario and the it is difficult to explain the origin

of the fluctuation on galaxy-scales.

On the other hand, in the CDM model, either the dark matter particles decouple
from thermal contact with each other when the particles are non-relativistic or the
particles have never been in thermal contact. In either cases, when the dark matter
particles concerned with the formation of large-scale structure, the particles was non-
relativistic and did not interact with radiation. The extra damping of small scales as
in BDM or HDM models never occurred and only the suppression of the evolution on
sub-horizon scales in radiation-dominated era is the source of deformation of power

spectrum. According to an accurate estimation (Bardeen et al. 1986), the power
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spectrum of CDM model at decoupling time is fitted by

In(1 +2.349)\* -
P(k) = Ak (%) (143899 + (16.19)* + (5460)° + (6.719)"] ",
-0x(
(2.4.4)
where ¢ = k/(Qh*Mpc™'). The fluctuation on small scales remain relatively in

CDM model, so the structure formation proceeds by bottom-up scenario: structures

on small scales form first, and they gather to form larger structures.
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Dynamics and Statistics in the Universe

3.1 CORRELATION HIERARCHY IN THE UNIVERSE

Quantifying the large-scale structure of the Universe rigorously is of fundamental
importance. For this purpose, N-point correlation functions, ¢V), are supposed to
be the most natural and powerful measures applicable to existing galaxy catalogues.

Two-point correlation function of galaxies £(r) = &, is the first of this hierarchy,
and has been extensively explored both observationally and theoretically since the
pioneering work by Totsuji & Kihara (1969). A mostly accepted expression for the
observed ¢ for galaxies in real space (corrected for the peculiar velocity contamina-

tion; see Davis & Peebles 1983) is

E(r) = (r/ro)™ (0.1A~*Mpc < r < 10h~*Mpc)

ro = (5.4 +0.3)h ' Mpc and 5 = 1.77 4 0.04. (3.1.1)

The next hierarchy, the three-point correlation function of galaxies (123 = ((r1, 72, 73),
is not determined so precisely as £(r). Nevertheless previous analysis consistently

suggested that the observed ( satisfies the following empirical relation:

C123 = Q[£12£23 + 523531 + 531512]7 (312)

where () is almost independent of the specific configuration of the galaxy triplet

(ry,7,,73) and is given approximately as
Q=08~13 (3.1.3)

in the range 0.1A"*Mpc to 10h~'Mpc (Peebles & Groth 1975; Groth & Peebles
1977). The four-point correlation function of galaxies nia34 = n(71,rs,P3,74), is
also not determined so precisely. The observed 5 satisfies the following empirical

relation:

234 = Ra [512523534 + 523534541 + 524541512 + 513532524 + 532524541 + 524541513

27
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+ £126248u3 + 24843831 + E161260a + E13E3a€an + E3abanor + 21 as]
+ Ry [&12615614 + Ea1€a36aa + 1852654 + En€aéas] (3.1.4)

where R, and R, are given by
R,=25+£06, R,=43%1.2, (3.1.5)

in the range 0.5 'Mpc to 4h™*Mpc (Fry & Peebles 1978). At this stage, the
above results are equally compatible with the interesting cases including R, = R,
R, = Ry/3. Té6th et al. (1989) and Gott et al. (1991) found that equation (3.1.2)
also holds for clusters of galaxies, although the statistical significance is not so high.
If @, R,, and Ry are constants and £(r) follows a single power-law (equation [3.1.1]),

then ¢ and 7 scale as

C()\T‘l,)\rz,)\rg) = A_}yC(T‘l,T‘Q,Tg), (316)
C()\T‘l, )\T‘Q, )\T‘g, )\'P4) = A_S’YC(Tl, T‘Q, 'I"'37 'I°4). (317)

[t is tempting to generalize the above relation for reduced (connected) N-point

correlation functions as follows:
EM Ny, ey) = ATV M ). (3.1.8)

In fact, the above scaling relation (3.1.8) provides a self-similar solution to the
BBGKY equations in a strongly nonlinear limit (£ > 1) in an Einstein-de Sitter
universe. The above relation (3.1.8) suggests the hierarchical ansatz for the N-
point correlation function which claims the N-point correlation function is a linear

combination of the (N — 1)-product of two-point correlation functions:

N-1
EVr, )= Y Qv Y. TI &(ram). (3.1.9)
trees(a) labelings edges(AB)

In the above notations, the edge (AB) is one of the edges in some tree graph (a)
which is a set of connected N — 1 edges linking N-points rq,...,rx. All the distinct
tree graphs are labelled by (a) and “labelings” indicate the symmetric sum with

respect to the N-points (see Fry 1984b for details).
This relation is known to be satisfied approximately in observations (Sharp 1981;
Sharp, Bonometto & Lucchin 1984; Meiksin, Szapudi & Szalay 1992; Szapudi, Sza-

lay & Boschan 1992). but has not been proven to be exact in spite of a number
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of theoretical studies on the relation (3.1.9) (Davis & Peebles 1977; Fry 1984a,b;
Goroff, Grinstein, Rey & Wise 1986; Hamilton 1988; Balian & Schaeffer 1989a,b;
Bernardeau 1992). Fry (1984b) explicitly computed the functional forms of ¢ and
n in perturbation theory. Basically he found that the ansatz (3.1.9) does not hold
strictly in the sense that the amplitude @), R, and R in equations (3.1.2) and
(3.1.4) depend on the geometric configuration of the triplet (ry,7,,73) and of the
quartet (ry,7y,73,7,), although the dependence is fairly weak and @, R, and R,
are always of order unity. The validity of the ansatz for ( in a strongly nonlinear
regime has been directly examined by Suto (1993) using N-body simulation data of
a low-density unbiased cold dark matter model in which Q5 = 0.2, A\g = 0.8, h = 1.0.
The result indicates that the ansatz (3.1.2) holds in an average sense, and a simple
arithmetic averaging gives () = 1.2 £ 0.8. In addition, the scatter around the mean

value reflects some dependence of () on the triplet configuration.

There exist several studies to examine the hierarchical ansatz after averaging
over the N-point configuration including counts-in-cell analyses (Park 1991; Coles
& Frenk 1991; Lahav et al. 1993). This approach corresponds to dealing with the

volume averaged N-point correlation function:

/ Py Pt (e, .y (3.1.10)
,

rather than @) itself. Therefore it is difficult to detect the configuration depen-
dence of (), R, and R,, if any, depending on how to average over different config-
uration. Lahav et al. (1993), for instance, found a scale-dependence of skewness
and kurtosis from numerical simulations, but Colombi, Bouchet & Schaeffer (1993)
suspected that the dependence is ascribed to the finite volume effect. In order to see
whether or not the scale-dependence is real, it is most straightforward to carry out
the analysis dealing with £y itself. As will be shown below, the scale-dependence of
skewness found by Lahav et al. (1993) is in perfect agreement with the clear configu-
ration dependence of ( and 5 (before averaging over different triplet configurations).

Therefore it is unlikely that the result is a mere artifact of the finite volume effect.
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3.2 THREE- AND FOUR-POINT CORRELATION FUNCTIONS: ANALYSIS
OF COSMOLOGICAL N-BODY SIMULATIONS

In order to examine the validity of the ansatz (3.1.9) for N = 3,4, we considered
simulations with various initial fluctuation spectra, and in fact show that @, R,
and Ry exhibit weak but clear dependences on the triplet or quartet configurations,
the fluctuation spectra, and the degree of nonlinearity in the particle distribution
(Matsubara & Suto 1994; Suto & Matsubara 1994). Also of great value is the effect
of the peculiar velocity on the estimate of (. We will compute ( in redshift space
in order to elucidate its consequence in the low-density cold dark matter (LCDM)
model as an example of the most successful scenarios so far (Efstathiou, Sutherland,

& Maddox 1990; Suginohara & Suto 1991; Ueda, Itoh, & Suto 1993).

3.2.1 Simulation models

In order to see whether or not the ansatz (3.1.9) holds in general, we analyze six
data sets from large N-body simulations; four of them adopt initially scale-free

fluctuation spectra:
P(k) o k" (n=-2,—-1,0,and 1), (3.2.1)

and assume the Einstein-de Sitter universe. The next one corresponds to an LCDM(Q, =
0.2,\g = 0.8, = 1.0) model with a simulation box size L being 1002~"*Mpc. To
see if any finite volume size artificially affects the behavior, we use also a larger
LCDM model (Qp = 0.2, \g = 0.8, A = 0.75, and L = 300h~"*Mpc). All models were
assigned initially random Gaussian particle distribution at expansion factor a = 1.0,
and then are evolved with a hierarchical tree code implementing the fully periodic
boundary condition in a cubic volume of L. The LCDM model with L = 300h~'Mpc
employs Np = 128% particles and the gravitational softening length ¢, = L/2560
(comoving), while the other five models have Np = 64 and ¢, = L/1280. Fur-
ther details of the simulation models are described in Suginohara et al. (1991) and
Suginohara & Suto (1991).

3.2.2 Method to compute correlation functions

We estimate two-, three- and four-point correlation functions for cosmological N-

body simulation data by directly counting particles. The new method presented
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below save the computational time greatly and enable us to directly estimate three-
and four-point correlation function accurately. The two-, three-, and four-point
correlation functions are defined through the joint probability of finding objects in

volume elements 6V as follows:

§Pyy = n*6Vi6Va [l + &1, (3.2.2)
§Prgs = n°6V18Va8Va [1 4 bia + Eas + &1 + Craa) (3.2.3)
6 Piysq = n*6V16VaV50Vy 1+ Eup 4 Eis + Eua + Eas + aa + Eaa

+Ci2s + Ci2a + Ciza + Cosa + E1283a + E13&oa + E1aos + Mi2za), (3.2.4)

where 1 is the number density of the objects, and &5 = £(ry,72), (123 = (71,72, 73),
and 11234 = n(ry, 72,73, 74) denote two-, three-, and four-point correlation functions,
respectively with r; being the coordinate of the :-th object. Strictly speaking, this
definition of correlation functions for point process differs from the definition of
correlation functions for continuous field in chapter 2. The main difference is the
existence of the shot noise in point process which dominates on very small scales
comparable to the mean separation of particles of the point process. For the details
of this difference and the correction for shot noise, see Bertschinger (1992). On
scales where the particle distribution is well described by continuous density field,
the two definitions for correlation functions can be identified.

Global homogeneity and isotropy of the distribution reduces the degree of free-
dom for those functions to one, three, and six, respectively, corresponding the pair-
separation of the ¢-th and the j-th objects, r;; = |r; — ;|. To be more specific,
512 = 5(7“12), 5123 = C(T127T237T13), and M1234 = 7?(71277"2377“137 T34, 7“1477"24)- Obviously,
€12, Cro3 and 1934 are symmetric with respect to the indices.

If DD(r) denotes the number of particle pairs from simulation data in separation
r ~ r+dr and DR(r) is its counterpart for simulation particles (Np in total) and
randomly distributed particles (Ng in total), ¢ is obtained by

Nr DD(r
&) =5 DRETS

~1. (3.2.5)

Our estimate of the (reduced) three-point correlation function (y23 is based on
equation (3.2.3), which defines ( in terms of the probability of finding three objects,
and proceeds as follows; first, we compute separations of pairs of particles using
logarithmically equal bins. In practice, we use the total of Ny, bins between ryy,

n—1

and 7pac. Therefore the pair-separation in the n-th bin lies between rp,a and
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1/Noin - Second we randomly choose Np(ry) pairs each

Fmin@” Where o = (Fmax/"min)
for all the Ny, separation bins. This fixes one side ry of the triplets, and then
we accumulate the number of triplets, DDD(ry,ry,73), looping over the rest of all
particles. We decided to use the same constant value for N, irrespective of r; in order
to guarantee the same statistical significance for the pair separation ry, although
this resulted in requiring a large computational cost in small separations where the
number of such particle pairs is very small. The latter becomes serious especially
in the early epochs when the clustering is not so strong. That forced us to adopt
N, = 1000 in the analysis of the less evolved models while we could use N, = 2500
for the fully nonlinear models with the same (or less) CPU time. As for the rest of
the parameters, we adopted ry, = 0.0008L, rpa. = 0.25L, Ny, = 20, throughout
the present analysis. Third, we compute the corresponding number of triplets,
DDR(ry,r5,73), in the case of a Poisson distribution by using Ng(= 10°) randomly
distributed particles. This was performed just once for the smallest r; bin, and the
counts for the rest of r; bins were obtained simply by multiplying the appropriate
proportional coefficient because our simulations assume a fully periodic boundary

condition. Finally given the two-point correlation function &, ( is estimated from

those countings as follows:

. fVR I)I)I)(Tl,rz,rg)
pﬁD]Vb(Tl)I)I)I{(Tl,rz,rg)

{148(r1)}=€(r1) =E(r2) =€(rs)—1. (3.2.6)

C(r17r27r3)

Since ( is symmetric with respect to ry,ry and r3, we simply use the above expression
only if r;y < ry and r; < r3, and then symmetrize the result with respect to ry and
rs.

Now we obtain ((ry,ry,r3) evaluated at the logarithmically discretized bins. If
ri(e = 1,2,3) belongs to the n;-th bin, respectively, we will refer this triplet as

(n1,n2,ns3). Since ((r1,rq,rs) is symmetric with respect to r;, the triplets satisfying

1 <ny <ny <nz < Npig
ry+ry > 1y (triangular inequality)

(3.2.7)

are relevant for the further analysis below. These constraints reduce the number
of triplet configurations available in our analysis to 298. According to our choice
of separation binning, a triplet (7,7, k) is similar in shape to one (¢ + 1,7 + [,k + )
except that the latter is a factor of o larger in linear dimension. For instance, a
triplet (nq,n9,n3) is similar to a triplet (1,79 —ny + 1,n3 —ny + 1). Thus we will

use a notation of [1,ny —ny + 1,73 — ny + 1] to indicate all such triplets similar in
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Figure 3.1: Geometrical configuration for our three- and four-point correlation analysis. (a) A

triplet corresponding to a shape [1, ng, n.], and (b) a tetrahedron.

shape. For example, the shape [1,2, 3] refers to triples (1,2,3), (2,3,4), (3,4,5), ...,
(Nbin — 2, Nbin — 1, Npin) (we will classify 298 kinds of triplets into 25 “irreducible”
shapes accordingly).

We evaluated the error in the estimate of ( according to equation (3.2.6) by
taking account of the statistical errors in &, DDD(ry,rq,r3), and DDR(rq,7q,73).
The former is computed simultaneously in estimating ¢ from simulations data. To

the latter two countings, we simply assigned a Poisson error:
A(DDD) = vDDD, A(DDR) = vDDR. (3.2.8)

Our estimate of the (reduced) four-point correlation function 71234 is based on
equation (3.2.4), which defines 5 in terms of the probability of finding four objects,
and proceeds as follows; first, we compute separations of pairs of particles using bins
(Npin in total) with logarithmically equal interval between r;, and ry.,. Then, we
randomly choose Ny(r12) pairs each for all the Ny, separation bins. This fixes one
side, 712, of tetrahedra (Figure 3.1(b)). We decided to use the same constant value
for N, (4000 for real-space analysis and 1400 for redshift-space analysis) irrespective
of iy in order to guarantee the same statistical significance for the pair separation
.

Second, we select the third particles so that the resulting triplets (712, 723, 713)

belong to a specified shape. We use [1,n;,n.] to indicate a shape of triangles with

rie =7, 793 = ra™ ! and ri5 = ra™!

(Figure 3.1(a)). In the present binning, the
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number of all the irreducible shapes of triplets is 25. We selected the total number of
N(123) = Ny(ryq,1r93,713) triplets of particles from the simulation data for a given
shape [1,np,n.]. When the third particle satisfying the above shape condition with
the preselected pair of particles is found, we used the next pair as the baseline of
the triplet search, ri3. Thus N;(123) for a specific shape is in most cases equal
to the number of preselected pairs N,(r12). When all the separation bins for ry,
ros, and rq3 are much smaller than the mean particle separation in the simulation
data, it happens that no particle can form the specified shape with the given pairs
of particles, and only in such cases N;(123) becomes smaller than N,(ri2). For
instance, N;(123) is 1518 and 27 for the base triplet (Fmin, "min, "min) in real space
and in redshift space, respectively.

Third, the number of four-points DDDD(123;4) = DDDD(r12, 793, 713, 734, 714, 7'24)
is accumulated according to the location of the fourth particles (ri4,724,734) with
respect to the base triplets. We looped over the rest of all simulation particles to
find the fourth particles which form a proper tetrahedron with the N,(123) base
triplets of a specified shape [1,n;,n.]. The corresponding number DDDR(123;4) =
DDDR(r12, 723,713, 7'34, 14, 724) Was computed by using randomly distributed Ng(=
107) particles as the fourth particle candidates. The latter procedure was performed
just once for a given shape [1,ny,n.] of triplets. Then the resulting counts were
scaled with respect to the overall size of the triplets r by multiplying the appropri-
ate proportional coefficient since our simulations were carried out in a fully periodic
computational cube. Then finally we estimate the four-point correlation functions

as
Np DDDD(123;4)
= 1
N1234 NoN:(123) DDDR(123: 4)( + &2 + Ea3 + €13 + (123)
—1 — &2 — &o3 — &3 — €30 — E1a — Eaa — G123 — (234 — G134 — Ci24

—&12834 — £23€14 — 13604 (3.2.9)

Asin the case of {15 and (j33, all the above procedure used the Ny, bins with loga-
rithmically equal interval between rp, and rmax. If 75 (2j = 12,23,13,34, 14, 24) be-
longs to the n;;-th bin of separation, we will refer the tetrahedron as (ni2, n2s, n13, N34, N1, N24).

The resulting four-point correlation functions should satisty the following symmetry:

77(7“127 723,713,734, 714, 7“24) (?”127 713,723,734, 724, 7“14) (?”237 12,713,714, T34, 7“24)

=1 =1
= 7?(7°1277”1477"2477“3477"2377“13) = 77(?“3477“2377"2477“1277"1477“13) = 77(?“3477“1477"1377“1277"2377”24) ,

(3.2.10)
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as well as the triangular inequalities for four surface triangles of the tetrahedron,
and the positiveness of the volume of the tetrahedron (see , e.g., Appendix B of
Friedberg & Lee 1984). In addition, according to our choice of logarithmic separation
binning, a configuration of (n12,n23,n13, N34, N14,N24) is similar in shape to that of
(n12 + 7,n23 + J,n1s + J,nsa + J,n14 + J,n2a + ) except that the latter is a factor
of o’ larger in linear dimension. All the configurations can be classified to the
similar shape denoted by [1,193 —ny3+1,...,n94 —nyy + 1]. For example, the shape
[1,2,3,3,1,1] refers to four-points of (1,2,3,3,1,1), (2,3,4,4,2,2),(3,4,5,5,3,3),
e ey (Nbin = 2, Nbin — 1, Nbiny, Nbiny, Nbin — 2, Npin — 2).

The error of 71534 quoted in the rest of this section takes into account of the
statistical errors in &, ¢, DDDD(123;4), and DDDR(123;4). The former two are
computed simultaneously in estimating ¢ and ¢ from simulations data. As for the

latter two, we simply assigned Poissonian errors:
A(DDDD) = vDDDD, A(DDDR) = vDDDR. (3.2.11)

The above error estimate does not reflect properly the (complicated) statistical
nature of DDDD and DDDR, although it would not be an unreasonable guess.
Since sample-to-sample variations might make somewhat larger contribution to the
overall errors after all, we will not attempt to refine the error estimate here; the
reader should understand the significance of the errors which we will quote below

with the above caution.

3.2.3 The result of two-, three- and four-point correlation functions in N-

body simulations

The two-point correlation functions & for the scale-free models with n = —2, —1,
0, and 1 are plotted in Figures 3.2(a) to 3.2(d), respectively. Also in Figures 3.2(e)
and 3.2(f) is plotted ¢ for LCDM models with L = 1002~'Mpc and 300h~'Mpc,
respectively. Note the slope and amplitude of ¢ of LCDM models are in beautiful
agreement with equation (3.1.1). Although ¢ of the scale-free models does not match
equation (3.1.1) well, their analysis is useful in examining the dependence of @) on
the underlying fluctuation spectra.

For the analysis of the three-point correlation function, it is useful to work with
the normalized three-point correlation function

. C(r17r27r3)
QrT2:7a) = ) F €(ra)e(ra) + E(ra)e(r) (3:212)
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Figure 3.2: Two-point correlation functions of several cosmological models described in text: (a)
n=-2at a=325(0)and a =6.70 (¢); (b) n = —1 at a = 6.91 (o) and a = 18.2 (e); (¢) n =0
at @ = 8.80 (o) and a = 37.6 (e); (d) n = 1 at @ = 18.2 (o) and ¢ = 77.7 (e); (¢) LCDM with
L = 100h='Mpc and h = 1.0 in real space (o) and in redshift space (A); and (f) LCDM model
with L = 300h='Mpc and h = 0.75 in real space (O).
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rather than ( itself which varies up to nine orders of magnitude in the dynamic
range of our simulations. The hierarchical ansatz (3.1.2) states that Q(ry,rq,r3) be
independent of the shapes of triangles and is equal to a constant value, ().

In Figures 3.3 to 3.7 is plotted the behavior of ) for different models. We
calculated @) for all possible 25 shapes, but their characteristic behavior is illustrated
clearly in the eight typical shapes selected there. Let us call the first four shapes
[1,1,1], [1,1,2], [1,1,3], and [1,2,2] ‘non-singular’ triplets, in the sense that the size of
the three sides is similar. In the same spirit, we call the next two shapes [1,4,4] and
[1,4,5] ‘quasi-singular’, and the remaining two [1,10,10] and [1,15,15] ‘singular’.

Those figures clearly show how ) depends on specific configuration [ny,n,,ns]
and also the fluctuation spectral index n (mainly on small scales): as n increases,
the normalized three-point function decreases and becomes flat. This tendency is
in agreement with the previous analyses although they are fairly crude compared
with our present approach: Efstathiou et al. (1988) and Kauffmann & While (1992)
computed ‘Q(ry)’ by averaging over the two other sides r, and r3, and found a
similar scale-dependence to ours in the case of scale-free and LCDM models, respec-
tively. Fry et al. (1992) examined the equilateral configurations of various scales,
which correspond to our [1,1,1] shape, in Fourier space using their two-dimensional
simulation data. They concluded that the departure from the hierarchical ansatz
(3.1.2) become more significant for smaller n. Although their findings are quali-
tatively consistent with ours, we showed for the first time the explicit dependence
of @) on both sizes and shapes of the triplets in each model. It is interesting to
note that ) in ‘singular’ shapes are almost constant even in the n = —2 case where
scale-dependence for other shapes is strongest.

The function ) in the LCDM models behaves similar to the power-law models
with n = —2 ~ —1 as expected from the fact that the initial spectrum of the
LCDM models is fairly similar to that of the latter on scales considered here. The
reason why the values of () in two LCDM models are somewhat different would
be explained by the following differences: shape of the initial fluctuation spectrum
(which depends on the adopted value for h), spatial resolution (which is determined
by simulation box size L, employed number of particles Np, and the softening length
€,), and/or the sample-to-sample variation (Itoh, Suginohara & Suto 1992) due to
the realization of the initial condition. The basic conclusion, however, is clear and
secure: there exists a weak but unambiguous scale-dependence in () which cannot

be ascribed to a possible artificial finite volume effect.
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Although we have shown that the hierarchical ansatz clearly breaks down espe-
cially on small scales in models with large-scale fluctuations (n = —1 ~ —2), the
deviation is fairly small. Therefore simple-minded analysis of observational and/or
simulation data would likely lead to a misleading conclusion that the ansatz holds
very accurately. If one averages ‘)’ without making shape-wise analysis, the re-
sult 1s very dependent on the way of weighting over the various configurations of
the triplets. If we select triplets randomly from the particle distribution, almost
all triplets contain a large separation and the scale-dependence of the normalized
three-point correlation function we have found can hardly be detected.

For the analysis of the four-point correlation function, it is useful to work with

the normalized four-point correlation function

R(r19,793,713, 734, 714, T24) = =2 (3.2.13)

B £12623834 4 sym.(12) 4 £12613614 + sym.(4)

rather than n itself which varies up to nine orders of magnitude in the dynamic
range of our simulations. The hierarchical ansatz (3.1.4) with R, = R, states that
R be independent of the shapes of triangles and is equal to a constant value.
Figure 3.8 shows R as a function of the size of the shortest side r, = r13 (s, = s12)
in real (redshift) space of a tetrahedron in units of the computational boxsize L for
typical shapes [1,n;,n.,n4,n.,n]. Results for the low-density CDM model in real
space, in redshift space, and for the n = 0 model in real space are plotted in filled cir-
cles, open triangles, and open squares, respectively. This figure clearly exhibits basic
features of scale-dependent behavior of 7y934; the scale dependence is strong when the
six lengths of the tetrahedron are nearly the same (e.g., [1,1,1,1,1,1]). When the
shape becomes ‘singular’, the dependence becomes weak (e.g., [1,10,10,4,10,10]).
Since our results suggest that the normalized four-point correlation functions R
are not constant but dependent on the separations of the four points, it does not
make much sense to compute their average values unless specifying the weighting
method. In this respect, we should note that our entire data for four-points are
biased; we preselected a fixed number of the base triplets from particle data to
increase the statistical significance. Although simple arithmetic averaging is not
relevant at all, our LCDM model is potentially consistent with the values of R, and
Ry, (eq.[3.1.5]) observationally estimated by Fry & Peebles (1978), while n = 0 model
would lead to much smaller values (0.5 ~ 1) (Figure 6(a)). In addition, it should
be emphasized here that Fry & Peebles (1978) noted a possible departure from the

simply hierarchical form for four-point functions (their Figures 4 to 7 and section
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Figure 3.8: Scale-dependence of R as a function of the size of the shortest side 7, = 712 (84 = s12)
in real (redshift) space of a tetrahedron in units of the computational boxsize L for typical shapes
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respectively.
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[IIc ). Unfortunately any further detailed comparison between our and their results
is not feasible because of the completely different sample and techniques in deriving
the correlation functions. Naturally this should be left for the future project when

much deeper and wider galaxy survey data are available.

3.2.4 Redshift-space contamination

The two-, three- and four-point correlation functions in real space investigated above
are not directly observable from three-dimensional redshift catalogues of galaxies
and/or clusters. In fact they inevitably suffer from the contamination due to the
peculiar velocity field. This effect was studied analytically by Kaiser (1987) in a
linear regime and then by Suto & Suginohara(1991) in a nonlinear regime using
N-body simulations. The two-point correlation function in redshift space £s(s) is
quite different from that in real space £,.(r); in a nonlinear regime random peculiar
velocities tend to wipe out the actual correlation £,.(r), while in a linear regime
€s(s) is enhanced relative to &, (r) owing to the coherence of the velocity and density
fluctuation fields. Therefore to explore the effect of the redshift-space contamination

on the three- and four-point correlation function is of great interest.

For this purpose, we placed a fiducial observer at a certain point in the LCDM
model with L = 1002~'Mpc. Then we constructed a particle distribution in redshift
space convolving with the radial components of the peculiar velocities of all particles.
Then we repeated the same procedure described in the previous section to compute
the three- and four-point correlation function (s, ns in redshift space. The results
Qs, Rs are plotted in Figures 3.7, 3.8 as open triangles which should be compared

with their real space counterparts (filled circles).

The contamination effect is most impressive for (; which seems to be consistent
with hierarchical ansatz in contrast to (,. Therefore direct analysis of the redshift
survey data would conclude that the hierarchical relations hold very accurately for
(123 even though that is not the case in real distribution of galaxies. For 7534,
such effects are not so dramatic and the departure from the hierarchical relations
is significant both in real and in redshift spaces. An semi-analytic description of
two- and three-point correlation functions in redshift space is presented in section

3.4 below.
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3.3 STATISTICS OF ISODENSITY CONTOURS IN WEAKLY NONLINEAR
FIELD

3.3.1 Statistics of isodensity contours

There are many statistical tools to investigate the three-dimensional pattern of the
galaxy distribution including two-point correlation function, power spectrum, cluster
correlations, higher-order correlations, probability distribution function, etc. Among
others, there is a class of statistics using a smoothed density field which cut the noisy
property of galaxy distribution.

For example, Gott, Melott & Dickinson (1986) proposed to use the Euler char-
acteristic of surfaces of constant density as a quantitative measure for the topology
of large-scale structure. The genus G, which is defined by —1/2 times the Euler
characteristics of two-dimensional surfaces, divided by the total volume, can be a
quantitative measure of the topology. More intuitively, the genus corresponds to
“the number of holes” of the surfaces minus “the number of isolated regions” sur-
rounded by the surfaces per unit volume. The genus is a function of smoothing
scales and the density threshold. The genus as a function of density threshold for
a fixed smoothing scale is called the genus curve and is analyzed both in numerical
simulations and in redshift surveys of galaxies by many people (Gott, Weinberg &
Melott 1987; Weinberg, Gott & Melott 1987; Melott, Weinberg & Gott 1988; Gott
et al. 1989; Park & Gott 1991; Park, Gott & da Costa 1992; Weinberg & Cole
1992; Moore et al. 1992; Vogeley, Park, Geller, Huchra & Gott 1994; Rhoads, Gott
& Postman 1994). Analytic expressions of the genus for some cases are known so
far, including Gaussian random field (Doroshkevich 1970; Adler 1981; Bardeen et
al. 1986; Hamilton, Gott & Weinberg 1986), Rayleigh-Lévy random-walk fractal
(Hamilton 1988), union of overlapping balls (Okun 1990) and weakly non-Gaussian
random fields (Matsubara 1994b).

There are other statistics of isodensity contours, which include the 2D genus in
two-dimensional slices of density field Gy (Melott et al. 1989; Gott et al. 1992; Park
et al. 1992), the area of isodensity contours N3, the length of isodensity contours in
two-dimensional slices of density field N, and the level crossing statistics Ny (Ryden
1988; Ryden et al. 1989).

The analytical expression of these statistics are known for Gaussian random den-
sity field (Melott et al. 1989; Ryden 1988; Ryden et al. 1989; Adler 1981; Doroshke-
vich 1970; Bardeen et al. 1986; Hamilton, Gott & Weinberg 1986; Bond & Efstathiou
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1987). They are

G(v) = L (<k2>)3/2 (1—v?)e /2, (3.3.1)

A7z \ 3
Galv) = (2;)3/2 (@) ve "/, (3.3.2)
o\ 1/2
2N, (v) = %Nz(y) = Ny(v) = % (@) e 2, (3.3.3)

where v is the difference between density threshold and mean density in units of
standard deviation of density and
(k) = [k*P(k)d*k
[ P(k)d?k "’
with P(k) being the power spectrum of the density fluctuation.

(3.3.4)

Previous analyses mainly compared the observed genus etc. with the random
Gaussian prediction (3.3.1)—(3.3.3). With sufficiently large smoothing scales, this
comparison could tell us if initial density fluctuation is random Gaussian or not.
With the finite smoothing scale of cosmological interest, the effect of nonlinear
gravitational evolution would be substantial. This nonlinear effect has been ex-
plored only by using N-body numerical simulations so far. In the following, general
formulae of the isodensity contours for the field with weak non-Gaussianity is pre-
sented. These formulae is incorporated in the second order perturbation theory.
The smoothing effect on perturbation theory is also considered (Matsubara 1994b;
Matsubara 1995a).

3.3.2 Isodensity Statistics for Quasi-Gaussian Random Field

First, we introduce the seven quantities for a non-Gaussian random field é(x,y, 2)
with zero mean as (A,) = 07(8,08/dx, 08 /Dy, DS [0z, 0%80x?, 528 | dy*, 0%/ Dxdy)
where o = 1/(6?) is rms of the field and the field is defined in Cartesian coordinates
z,y,z. The statistics of isodensity contours G, GGy, Ny, Ny, N3 of constant surfaces
6 = vo is given by (Ryden 1988; Ryden et al. 1989; Adler 1981; Doroshkevich 1970;
Bardeen et al. 1986; Bond & Efstathiou 1987)

G(v) = —% (6p(Ar — )6p(A2)ép(As)|Adl(AsAs — AZ)) . (3.3.5)

Golv) = —% (8(Ay — 1)6p(As)| As| As) | (3.3.6)
IN (1) = %Nz(y) = Na(v) = 2(5(Ar — 1) | Aal) (3.3.7)
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where 0p i1s a Dirac’s delta-function. This expression is valid for general homoge-
neous and isotropic non-Gaussian random fields.

Let us proceed to evaluating the expectation value (equations [3.3.5]-[3.3.7])
for weakly non-Gaussian field. As usual, we define a partition function Z(.J,) as
a Fourier transform of a distribution function P(A,) of quantities A,: with the

partition function for a distribution function P(A,),

Z(J,) = /_O:O d"A P(A,) exp ( S J,A ) (3.3.8)

the cumulant expansion theorem (see section 2.3 and Appendix A) states that
= (A <A

Then one obtains the inverse Fourier transform of equation (3.3.8) in the following

In Z(.J,) is a generating function of connected correlation function ("

- MN [ MN>C'

useful form:

0 aN

Z ¢u1 MNM) PG(AM)v (339)

N=3 LT UN

P(A —exp(

where

P(A,) = 1 exp (—% S A, (W)_l)M Ay) : (3.3.10)

wgw)?det (v2)

is a multivariate Gaussian distribution function characterized by a correlation matrix

@/}EW) The inverse of this correlation matrix is denoted as ¢/~ In a weakly non-
Gaussian case, the exponential function in equation (3.3.9) is expanded in Taylor
series and equations (3.3.5)—(3.3.7) is expanded by higher-order correlations. In the
following, we assume that V) ~ O(aN=2). This relation is a very definition of
“weak non-Gaussianity” in this letter and is a result of perturbation theory (Fry

1984b; Goroff et al. 1986; Bernardeau 1992). Thus to the first order in o, the

expectation value of some function F(A,) is

PF )
(F)=(F)q+ = Z p&, <m>G + O(c?), (3.3.11)

p,l//\

where (---)g denotes averaging by multivariate Gaussian distribution (eq.[3.3.10]).
This expansion can be regarded as based on a multi-dimensional version of the Edge-
worth expansion. The usual one-dimensional Edgeworth expansion was recently
applied to gravitational instability theory (Juszkiewicz et al. 1994; Bernardeau &
Kofman 1994). All the terms in r.h.s. of equation (3.3.11) can be evaluated by
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straightforward but tedious Gaussian integrals. Spatial homogeneity and isotropy

simplify the final result as

60 = <57y (U%)/ e

X [Hz(y) to <§H5(z/) + %HB(V) + SUHl(Z/)) + 0(02)] . (33.12)

Go(v) = (273)3/2“;& e
y [Hl(y) to (gm(y) +THy(v) + U) + 0(02)] , (3.3.13)

2N (v) = %NQ(Z/) = N3(v)
_ % (“;ﬁ)m e/ [1 to (§H3(y) + ng(z/)) + 0(02)] . (3.3.14)

where H,(v) = (=)"¢”/*(d/dv)*e"*/* are Hermite polynomials, and we have de-

fined three quantities,

1
S = ;@53%
_ 272
T = 2<k2>04<5 V26, (3.3.15)
_ 3 2
U= —4<k2>204<v5 VEVv26).

¢

The quantity S is usually called “skewness”. The first term in square brackets
of equations (3.3.12)—(3.3.14) corresponds to Gaussian contribution and the other
terms correspond to non-Gaussian contribution.

As an illustrative application of this result, we consider the case that correlation
functions are given by hierarchical model. In hierarchical model, connected corre-
lation function of N-th order is modeled as a sum of N — 1 products of &, thus
our previous assumption V) ~ O(aN=2) is satisfied. Specifically, third order cor-
relation function ((@,y,z) = (6(x)6(y)o(z)) is related to £(|x — y|) = (6(x)d(y))
by

.y, 2) = QE(Je — y)é(ly — =[) + E(ly — 2))é(lz — =) + (|2 — 2])¢(le — yl)],
(3.3.16)
where () is a constant (undetermined in this model). If this equation (3.3.16) is

exact for some large smoothing scale such that £(0) = 0 < 1, the quantities S,
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T and U reduces to 3Q), 2Q) and (), respectively, and the statistics of isodensity

contours with correction terms of non-Gaussianity are

GO () = 1 (@)3/2 e~V /2 [1 Y %1/(1/2 —1)(v?* = 3)o| + O(c?),

T axz \ 3
(3.3.17)
wiy, L (B e Q, 2 2
G () = g [z/+5(y _1) a] +0(e?), (3.3.18)
IN(v) = %Nz(y) = Ny(v)
o\ 1/2
-2 (@) e %1/(1/2 ~1)o] +0(e%). (3.3.19)

Figures 3.9(a) — 3.11(a) plot the results for Qo = 0,0.2,0.4,0.6.

3.3.3 Gravitational evolution of statistics of isodensity contour in second order

perturbation theory

Gravitational nonlinear evolution give rise to S, T, U even from the initial Gaussian
random density fluctuation which has vanishing S, T, U. We use second order
perturbation theory of the non-relativistic collisionless self-gravitating system in the
fluid limit (e.g., Peebles 1980, §18) to compute S, T, U to lowest order in o in
Einstein-de Sitter universe. Considering growing mode only, third order correlation

function in Fourier space is given by (Fry 1984; Goroff et al. 1986)

(8(k1)6(ke2)8(k)) = (27)°65 (ey + oy + kes)
10 [k ko) ky-ky 4 [ky-ky\’
X{ 7+(b+h)km2+7(hb)

where P(k) is a power spectrum of linear theory. Evaluating S, T', U (eq.[3.3.15])

P(k1)P(ky) + cyc.} , (3.3.20)

in Fourier space with equation (3.3.20) results in,

34 82 54
S = — T = — = —

77 217 35

This value of the skewness S was already given by Peebles (1980). Note that S, T,
U are independent on the shape of the initial power spectrum. The resulting genus

curve etc. are plotted in Figures 3.9(b)-3.11(b) for o = 0,0.2,0.4, 0.6.

In fact, the observable curve is obtained by smoothing of density fluctuation

(3.3.21)

while the above result is not for a smoothed field. Next we evaluate the smooth-

ing effect in the case that the smoothed density fluctuation with sufficiently large
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Figure 3.9: Asymmetries of the normalized genus curves G(v)/G(0) induced by non-Gaussianity to
first order of rms o of fluctuation. The sources of non-Gaussianity are (a) hierarchical model, (b)
unsmoothed perturbation theory with Gaussian initial fluctuations, Gaussian-smoothed perturba-
tion theory with Gaussian initial fluctuations of power-law spectra, (¢) P(k)  k, (d) P(k) = const.,
(e) P(k) o< k=1, (f) P(k) o< k2. Solid lines, dotted lines, dashed lines, long-dashed lines show o =
(in (a), Qo =) 0,0.2,0.4,0.6 cases, respectively.
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Figure 3.10: Asymmetries of the normalized 2D genus curves G(v)/G2(1) as in the previous figure.
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Figure 3.11: Asymmetries of the area of isodensity contour N3(v)/Ns(0) as in the previous figure.
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smoothing scale is well described by second order perturbation theory. Recently,
Juszkiewicz, Bouchet & Colombi (1993) gave the smoothing effect on the skew-
ness S for Gaussian and top-hat filter. In the following, we use the Gaussian fil-
ter dp(®) = (27 R?)™32 [ d®yé(y) exp(—|@® — y|?/2R?) which is usually adopted in
smoothing noisy observational data. The quantities S, T', U for Gaussian smoothed
field 6 are obtained similarly as in the unsmoothed case, and the result is

1
S = (24 K)Lazo 4+ 3Lz + (1 — K)Laa],

T art

1 4 7
= 6074 [5(5 + 2K )L240 + 3(9 + K )L331 + 15L151
+10(2 = K) Laaz + 3(1 = K) Lsss], (3.3.22)
1
~ 14074 [7(3 4 2K) Laso + 21 Lssy — 5(3 + 4K ) Lagz — 21 Lgss — 6(1 — K) Lyaa] -

Here we introduce the following integrals:

[:2)2- (a+5)/2
Lugn(R) = (=)t

iy
R

0 0 1 20 2 o
></ d:z;/ dy/ dpe~ @+ eyl oy p (1) P(2)P(y) (3.3.23)

0 0 -1

<k2>2—(a+ﬁ)/2

—(L)yor T

(=) g opR

></0 d:z;/o dye_R2(952+y2):z:a_l/zyﬁ_lﬂ]nﬂ/g(xy]%z)P(:L')P(y), (3.3.24)

where op is the rms amplitude of the Gaussian smoothed density fluctuation with
R, P, is the Legendre polynomial, and [, is a modified Bessel function. The above
results hold for arbitrary cosmological models with ) and A. The latter effect man-
ifests only through K = K(Q,\) defined by equation (2.2.39) which very weakly
depends on © and \. When R — 0, the dependence of equation (3.3.22) on the
initial power spectrum is canceled and equation (3.3.19) is rederived. The statistics
of isodensity contours for smoothed field is dependent on the specific shape of initial
power spectrum on the contrary to the unsmoothed one. For the power-law fluctu-
ation spectra P(k) o< k™, S, T and U can be written down explicitly in terms of the

hypergeometric function as

n+3 n+3 31

2 2 274 2 2 24
n+3 n+H 31 n+3 n+d 51
T =3F LI _K)F pro2.s
3 ( 2 2 ’2’4) (n+3-K) ( 2 9 ’2’4)
(n—=2)(1 - K) (n—|—3 n+5 7 1)
F —— 3.2
15 2 7 92 '9274)”° (33 5)

S—SF( n+3 n—l—351)

_|_
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unsmoothed n=1 n=0 n=-1 n=-2 n=-3 CDM HDM
S 4.857 3.029 3.144  3.468 4.022 4.857  3.443 4.018
T 3.905 2.020 2.096 2.312 2.681 3.238  2.335  2.970
U 1.543 1.431 1.292  1.227 1.222 1.272  1.223 1.306

Table 3.1: The numerical values of S| T, U for unsmoothed perturbation theory and smoothed

perturbation theory for power-law spectra, n = 1 to —3, CDM and HDM models.

U:F<n—|—5 n+5 5 1)_n—|—4—4[&F<n—|-5 n+5 7 1)‘

2 T2 21 5 2 T2 21

The expressions for S in equations (3.3.22) and (3.3.25) are derived by Lokas et
al. (1995) which are equivalent to the other form independently derived by Mat-
subara (1994b). Similarly we transform the expressions for 7" and U presented in
Matsubara (1994b; eqgs. [16] and [18]) using the function L,s,(R), which are given
in equations (3.3.22) and (3.3.25). Numerical values of S, T, U for power-law ini-
tial spectra, CDM and HDM models are summarized in Table 3.1. In CDM and
HDM models, we set g = 1, A = 0.5 and smoothing length = 10 Mpc. The values
of skewness S in this table was first obtained by Juszkiewicz et al. (1994). The
corresponding genus curves etc. for n = 1,0, —1, —2 are shown in Figures 3.9(c—f)-
3.11(cH) for 0 =0,0.2,0.4,0.6.

The prominent feature of the results, equations (3.3.12)—(3.3.14) is that weakly
non-Gaussian correction introduces asymmetry to the symmetric or anti-symmetric
curves. The pattern of the asymmetry is dependent on initial power spectra through
smoothing effect of S, T', U. Thus, in principle, accurate observations on the statis-
tics presented here can restrict the properties of initial fluctuation, such as Gaus-
sianity, the shape of the spectrum, by the amplitude and the pattern of asymmetry
of the curve. The projects as Sloan Digital Sky Survey (SDSS) will enable us to
have a large amount of redshift data in near future and the analysis indicated here

will be important.

3.3.4 Comparisons with numerical simulations

We found that the analytic expression of the genus curve agrees well with the nu-
merical N-body simulations for power-law initial fluctuations P(k) o« k™ and CDM
models (Matsubara & Suto 1995). In Figure 3.12 is plotted the normalized genus
G(v)/G(0) as an example of the comparison. The initial fluctuation is the Pois-
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Figure 3.12: Comparison of the analytic genus curve (a solid line) with that from an N-body
simulation (symbols) for the Poisson model at ¢ = 0.2. A dashed line indicate the Gaussian

prediction.

son model P(k) = const. The rms of the fluctuation at the stage of comparison is

oc=0.2.

3.4 STRONGLY NONLINEAR CLUSTERING IN REDSHIFT SPACE

3.4.1 Statistics in redshift space

Conventional cosmological observations provide direct information on large-scale
structure in redshift space which, however, is not necessarily the same as that in
real space due to the presence of peculiar velocities of galaxies. If galaxies move
purely with the uniform Hubble expansion, redshift surveys would tell us the real
distribution of galaxies. In reality, however, the peculiar velocities of galaxies distort
the distribution in mapping from real space to redshift space. The distortion is along
the line of sight and the clustering pattern of galaxies in redshift space becomes
anisotropic.

There are two characteristic features in the redshift space distortion. On small
scales, the random peculiar motions in virializing clusters stretch the shape of clus-
ters along the line of sight: the ‘finger of God’ effect. As a result, the strength of
the clustering is weaker in redshift space than in real space (e.g., Lilje & Efstathiou
1989; Suto & Suginohara 1991; Peacock 1993; Matsubara 1994a). On large scales,

the coherent velocity field falling in the region with the excess mass make the pertur-
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bation enhanced along the line of sight, in contrast to the small-scale case (Sargent
& Turner 1977; Kaiser 1987; Lilje & Efstathiou 1989; McGill 1990; Hamilton 1992).
Peacock (1992) phenomenologically represented this small-scale effect by assuming
Gaussian smearing of the density contrast in Fourier space. These effects on two-
, three- and four-point correlation functions were studied numerically in Suto &
Suginohara (1991), Matsubara & Suto (1994) and Suto & Matsubara (1994) using
N-body simulations (section 3.2).

One possible way to check the scaling relation (3.1.8) and/or hierarchical model
(3.1.9) in real space is to study redshift surveys of galaxies at the cost of the con-
tamination by the peculiar velocities. De Lapparent, Geller & Huchra (1988), for

example, estimated the two-point correlation in redshift space:

—

£(s) = (i) (3h~"Mpe < s < 14h~"Mpc) (3.4.1)
So

so= (17551 H)A "Mpe  and v =1.640.3. (3.4.2)

There are many papers which claim indirectly the validity of the relation (3.1.8)
and/or (3.1.9) using redshift surveys (e.g., Alimi, Blanchard & Schaeffer 1990; Mau-
rogordato, Schaeffer & da Costa 1992; Gaztanaga 1992; but see Vogeley Geller &
Huchra 1991). Redshift surveys are sometimes studied without any inversion to real-
space distribution nor correction for the peculiar velocity contamination. Thus it is
important to clarify the effect of the contamination on the models for the N-point

correlation functions (3.1.8) ~ (3.1.9) as we will attempt in the following section

(Matsubara 1994a).

3.4.2 A model for correlation functions on small scales in redshift space

To specify the model below, we need a distribution function of peculiar velocities.
For that purpose, we will use, in this subsection, the particle-averaged distribution
function f(v). Therefore we do not take account of, for instance, the difference of ve-
locities in high density or low density region. In fact, it is found observationally that
the dependence of distribution function of velocities on its location is weak: the ob-
172 varies as ~ r% (Davis & Peebles 1983)
where vy, is a relative velocity of a pair of galaxies with separation ry;. The cosmic
virial theorem (Peebles 1980 §75) also indicates this behavior provided that three-

point correlation function has the hierarchical form (3.1.2) at least approximately.

served two-point velocity correlation (vZ,)

Because the dependence on the separation is weak, we can reasonably assume that
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all the galaxies have the same velocity distribution independently of their locations.
The effect of velocity correlations will be discussed in the next subsection.

We are interested in the line-of-sight component of the peculiar velocity, v, and
denote the probability distribution function for v as f,(v) where o is the root-mean-
square value of the velocity dispersion \/@ where the averaging (v?) is particle-
weighted. Independence of f,(v) on location reflects the above assumption. It
should be noted that the coherent motion of galaxies according to linear theory
(Kaiser 1987) is not included in our model. The coherent motion would enhance the
correlations on large scales 2 (5 ~ 10)A~'Mpc, so our model should be applied on
small scales < a few A~'Mpc, which corresponds to a typical size for clusters of
galaxies.

The relation between number densities in real space p(")(7) and in redshift space

p¥)(s) is given by
o) = [~ duf,(0)p)(s + Hi ), (3.43)

where an observer is at the origin of the coordinate and s = s/|s|. To see the relation
(3.4.3), it is useful to consider the infinitesimal cylinder at s with each base AS and
a length Al®) with its bases normal to the line of sight. Then the probability that

a galaxy is in that cylinder in redshift space is
PO () ASALL) = / T AASP (s 13)f, (Hol) HoAI®. (3.4.4)

This proves the relation (3.4.3). In terms of density contrast, 6 = (p — p)/p, where
p denotes the mean density, relation (3.4.3) is given by

56)(s) = /_ T dof, (v)60) (s + Hi'v3), (3.4.5)

where we used the normalization condition, [dvf(v) = 1, and the fact that the
mean densities take the same value both in real and in redshift space.

If two galaxies in redshift space at s; and sy are far enough from the observer
compared to the separation of the galaxies s12 = |1 — s3], i.e., s12 < |s1],|s2], we
can approximate §; = §; = n, where n represents the direction of the line-of-sight
to the pair of galaxies. Then we can calculate the two-point correlation function in

redshift space using equation (3.4.5):

555)(812;012) = <5(5)(81)5(5)(82)>
- /_O:o dvldvzfa(vl)fU(DQ)f(T) [ri2(v1 — a5 512,012)],  (3.4.6)
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where

T12(Ul — V2; 819, 012) = Ho_l\/(’l)l — 1)2)2 — 2H0(’l)1 — 1)2)812 COS 012 + HOQS%Q, (347)

and 6, is the angle between line-of-sight and the direction of a vector sy = s —
Sy, l.e., cosfiy = M - Sy1/|891]. Using equation (3.4.5), the three-point correlation

function in redshift space can be derived similarly:

ch'S)(81278237831;01270237031) = <5(5)(81)5(5)(82)5(5)(33)>
= /_ dvldUZdv?)fcr(vl)fcr(UZ)fU(UB)C(T) [7“1277"2377“31]7 (3-4-8)

where r;;,0;; (17 = 12,23,31) are defined in equation (3.4.7) with permutations of

7
its indices. More generally, the reduced (connected) N-point correlation function

5](\57) in redshift space is related to its real space counterpart f%) as

N

dviﬁ,(w)) €0 ). (3.49)

— 00

eV (s} {0:3)) = <ﬁl 5(5)(3i)> - /OO (

[ 1=

where

rij(vi —vj;8i7,0:5) = Ho_l\/(vi —v;)% — 2Hy(v; — v;)sy; cos 0;; + His?;,  (3.4.10)
and 6;; is the angle between the line of sight and the direction of s; — s;, and (- - -)¢
indicates the cumulants (or connected part). The arguments {s;;} and {6;;} of 5](\57)
are not completely independent for N > 3; the condition that all the triangles in

redshift space should be closed imposes the following constraints:
S;5 COS (92']' —|—8]'k COs (gjk —I_Ski COs (ng = 0, (3411)

where ¢, 7, k are all different positive integers and are less than or equal to N.
We will apply this model to examine the correlations in redshift space and the
hierarchical ansatz. As for the velocity distribution f,(v), we mainly adopt the

exponential distribution:

v) = L VEh/o
fcr( )_ \/50_ 9 (3412)

which is observationally favorable compared to Gaussian distribution:

1 2 2
fr(v) = eV (20, (3.4.13)

2o
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In fact, the available observations of galaxies (Davis & Peebles 1983) and numerical
simulations (Ueda, Itoh & Suto 1993) suggest the form (3.4.12) rather than equa-
tion (3.4.13). We will also use the Gaussian form (3.4.13) later for the purpose of
comparison.

Note that if the characteristic scale of distribution f, is only its rms o, the
dimensional argument shows that f scales as f,,(v) = v=!f,(v™1v), as explicitly
seen in equations (3.4.12) and (3.4.13). In addition to that, if the scaling property

(3.1.8) is correct, the following scaling relation is derived:

5](\57,)u0({3ij}) = V_(N_l)’yf](\sf,)cr ({V_lsij}) ) (3414)

where 5](\5,)0({3”}) are direction averaged N-point correlation functions in redshift
space fj(\sf)g({sw}) = <§](\?)g({3”}, {0:;})) direction and their explicit forms are given below
for N =2 and 3.

3.4.3 Velocity correlations

In the previous section, we obtained a simple formula (3.4.9) by ignoring the velocity
correlations. Because the velocity correlations are weak as noted in the previous
subsection, our formula (3.4.9) is considered to be a first approximation. We discuss
here how the velocity correlations affect this formula and propose a modified formula
(3.4.27) below.

For that purpose, let us first consider the conditional probability that line-of-
sight velocities of N-galaxies are between v; and v; 4+ 6v;, (¢ = 1,..., N) when these

N-galaxies are at rq,...,7ry. We denote the probability as
N
Ry(vi,...,on|re, .o rn) [ 6vs. (3.4.15)
i=1

In the previous subsection, Ry was approximated simply by [TY, f,(vi). More
generally, however, the distribution of line-of-sight component of peculiar velocity v;
for :-th galaxy is the function of ry,..., 75 and possibly of vy,. .., v;_1,v;11,...,0UN.
To take this dependence fully into consideration is complicated and is beyond the
scope of this paper. Our approximation here is to assume that this dependence is
only through the dispersion of line-of-sight velocities o(ry,...,7rx) for each galaxy,
and then the probability (3.4.15) is given by

Ry(vy,.. . on|Py,. . r,) = Hf(vi;a(rl,...,rN)), (3.4.16)
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where
fv,0) = f,(v). (3.4.17)
Next we denote the probability density that the galaxies are at ry,...,ry as
Pn(ry,...,7n). This quantity is related to real-space N-point correlation function
()
N’ as

Py(ry,...,en) = p [5](\7;)@1, ..., 7n) + disconnected parts] , (3.4.18)

where “disconnected parts” represents the terms expressed by lower order correlation
functions (see, e.g., Peebles 1980; Bertschinger 1992). The joint probability density
Sy that the galaxies are at ry,...,rx and line-of-sight velocities are vq,...,vx 1s

expressed as
SN(/rl,---,T'N;Ul,---,vN) :PNRN

:PN(Tl""7T‘N)l:[1f(vi;0-(r17"'7rN))' (3419)

Using these quantities, the probability density that the galaxies are at s1,..., sy in
redshift space is given by

P (51, 5n)

o~ N
= / HdviSN[r(slvvl)7‘"7T(SN7UN);v17"'7vN]
=1

— /_O:o (f{l dv; f [W;O’(’I‘(Shvl),...,’I‘(SN,UN))]) Py [r(s1,v1),...,7(sn,0n)],

(3.4.20)

where
r(s,v) = s+ Hy'vs. (3.4.21)
The mean velocity o (r(s1,v1),...,7(sn,vn)) is not expected to vary strongly as

noted in section 3.4.2 and we denote a rough estimate of this quantity by . The
major contribution to the integral of equation (3.4.20) is from v; < & because of the

factor f. In this region,
|r(si,vi) - T‘(S]',U]')| ,S, H0_15 (3422)

is satisfied on small scales such that |s; — s;| < Hy 'a. The mean velocity o is a

function of left hand side of inequality (3.4.22) because of statistical homogeneity and
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isotropy of the universe. At this point we make a second approximation: on small
scales with inequality (3.4.22) for 7,7 = 1,..., N, o is considered to be a constant
on dependent only on N. Thus equation (3.4.20) is approximated as follows:
o /N
PO(s1, . w) = | (H dvifUN(vi)) Py (r(s1,01),. .., 7(syon)) . (3.4.23)
% \i=1
Roughly speaking, oy is the mean line-of-sight velocity of one of N-galaxies under
condition that these N-galaxies have the mutual separations less than H; 'a. Thus
we naturally expect that on is a increasing function of N because the expected
gravitational potential decreases as N increases.
We are mainly interested in the N-point correlation function £y rather than the
probability density Py and we can express the above equation in terms of £y using
relation (3.4.18). In N = 2 case, two-point correlation function in redshift space in

approximations in this subsection, £ | is

€8 (s1,82) = €9 (5121 012), (3.4.24)

where fc(rz) denotes the two-point function in the previous subsection defined by

equation (3.4.6). In N = 3 case, the corresponding relation is

Cl(qzziv('sl?sQ?s?)) = Cc(rz)(31275237531; 91279237931)
+ (fc(rz)(slz; 912) - fc(rz)(slz; 912)) + (fc(rz)(szza; 923) - fc(rz)(szza; 923))
+ (fc(rz)(s?)l; O31) — 5 (31 931)) (3.4.25)

On small scales, £&) < () is generally satisfied in observations and in numerical
simulations. Then the last three terms in the right hand side are much smaller than
the first term if oy and o3 are not much different with each other. This approximation

leads the following:
()

Clgzzzv(slvs%si%) = Ca‘f;, (512,523, 8315 012, 03, 031). (3.4.26)

The same argument can be extended to higher order correlations:

ENnew (81 88) = 00 ({s): {037}). (3.4.27)
In summary, the main effect of velocity correlations on our previous formula is
to make the parameter o in equation (3.4.9) dependent on N. In spite of many
approximations in this subsection, we see that equation (3.4.27) is in good agreement
with numerical simulations. Before that, we examine the analytical structure of
equation (3.4.9) or equation (3.4.27) using models for correlation functions in real

space and velocity distribution functions in N = 2.3 cases in detail.



3.4. STRONGLY NONLINEAR CLUSTERING IN REDSHIFT SPACE 63

3.4.4 Two-point correlation function in redshift space

In this section, the relation (3.4.6) is examined assuming the power-law model
£ (r) = (ry/r)" for the two-point correlation function in real space. After trans-
forming variables to u = vy + vy, v’ = vy — vy, and symmetrizing the integrand with

respect to transformations u < u', u < —u, v’ < —u', equation (3.4.6) reduces to

€)= oy [ [Cau's, (“;“) 2 (“‘2“)

X [rlg(u, $,0)77 +rig(—u,s,0)77

+ri2(u,s,0)77 + (=) s, 0)_W] , (3.4.28)

where we used the isotropy f,(—v) = f,(v). Correlations in redshift space are
anisotropic in the sense that the clustering is elongated along the line of sight on
small scales due to random peculiar motions (finger of God effect). This is why corre-
lation functions in redshift space 5](\57) should have the arguments for directions {6;;}
in addition to the arguments for scales {s;;} in equation (3.4.9). It is usual, however,
to consider the direction-averaged correlation function in redshift space (e.g., de Lap-
parent et al. 1988). In the case of two-point correlation function, the direction (6, ¢)
of the line linking two points are randomly oriented in three-dimensional space, so
we should average it by integrating over SO(3) invariant measure, sin 0dfdeo/(4r).

Then the direction-averaged two-point correlation function reduces to
G(g) = - [T (5
£(s) = 5 sin@ df £(s;0). (3.4.29)
0
This averaging for equation (3.4.28) can be carried out explicitly, resulting in

(5)( o) (Horo)” /OO J /“ 0 u+u u—u'
5 (S) (2_7)H05 0 u 0 ufo’ 2 fcr 2
y lu + Hos|*™ — |u — Hys|*™7 N lu' + Hos|*™ — |u' — Hos|*™

/

] . (3.4.30)

u u

Now we adopt velocity distributions (3.4.12) and (3.4.13) to compute the above
integral. First we consider the exponential case (3.4.12). Performing partial inte-

gration gives

gy L Hors 4y (Hos
3 ()_2\/5(2—7) . F(U) (3.4.31)

where

o0 A it [
F(:z;)z/ dt (1+ V2at) e—vanlt 11 t' = (3.4.32)
0
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It is useful to derive the asymptotic expansion of F(x). When & — oo, it can be

evaluated by Laplace’s method as

Fa) " i 2 I L g ﬁ@ —v =) = (3.4.33)
= ]_
On the other hand, when x — 0, it approaches a constant:
e e et
Fo(v) = / a1 : It =1 (3.4.34)
0

For v = 1.8, the above constant is given numerically as
Fo(1.8) = 1.02077 - - -. (3.4.35)

The corresponding asymptotic limits of £(*)(s) are

fl(g) Hoslomee (:_0) B {1 n 7(73_ D (125)2 +0 ((Hiw)4)} (3.4.36)

0s/o— F H v
5(5)(5) Hos/g—0 0(7) 070 1-v (3.4.37)
2V2(2—7) o

The limit (3.4.36) simply gives the small deviation of the redshift-space correlation

from the real-space correlation caused by the random peculiar velocities on scales
above o/ Hy. We can see, even if we ignore the coherent motion of galaxies, that the
two-point function in redshift space on scales ~ o/ Hj is somewhat greater than the
one in real space. This is qualitatively understood by the decrease of the correlation
on small scales and the particle conservation:
/OOO r2e0 (rydr = /OOO s2€0)(s)ds. (3.4.38)

As noted in section 3.4.1, the coherent motion increases £(*)(s) on large scales.
Random peculiar velocities also provide another mechanism that increases ¢ with
respect to ¢ on scales 2 o/Hy though the latter effect is much smaller than the
former as we will show in the next section using N-body simulation. The other limit
(3.4.37) implies that the power-law index of the two-point correlation function in
redshift space is 1 — 4 on small scales (< o/Hp). In the intermediate region, the
power-law index takes an intermediate value, —y ~ 1 — v, and this is exactly what
is observed (de Lapparent et al. 1988).

Corresponding to the scaling relation (3.4.14), the behavior of £&) with respect
to the velocity dispersion o in two limits (3.4.36) and (3.4.37) is

v el (g s vo/Hgy
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The correlation on small scales is in inverse proportion to the velocity dispersion o,
but the correlation on large scales is independent of the value of o.

We next compare the results obtained above to the case of Gaussian velocity
distribution (equation [3.4.13]). Let us distinguish the case of Gaussian (3.4.13)
from the exponential case (3.4.12) by adding the suffix . Substituting equation
(3.4.13) in equation (3.4.30), we obtain

Oy — L Mo (HO‘S) 3.4.40
fG (S) 2ﬁ(2 _7) o o ) ( o )
where , ,
o0 2,24 |1 1= — [t = 1|*77
Fo(x) z/o de-era L1 . =1 (3.4.41)

The asymptotic expansion of Fg(x) for @ — oo is

e i 2;;/; (H(z - j)) ﬁ (3.4.42)

i=0

and F(0) = Fy(v). Corresponding to limits (3.4.36) and (3.4.37), we have the

following for the Gaussian case:

(G)(g) Moslomes (i) - (1 + @Hag; +0 (3—4)) . (3.4.43)

To

Hosg—@ Fo(v) Horgsl_w

2ym(2—7) o
The scaling (3.4.39) also holds in this case.

On large scales, the lowest two terms are the same in both exponential and

(3.4.44)

Gaussian cases, so they behave very similarly for the same o. Correlations on small
scales also behave in a similar way except that the magnitude in Gaussian case is
somewhat less than in exponential case with the factor \/2/7 ~ 0.8 for the same o.

Functions (3.4.31) and (3.4.40) are plotted in Figure 3.13 for v = 1.8. In the upper
panel of Figure 3.14 is plotted the function (3.4.31) for various values for o.

3.4.5 Three-point correlation function in redshift space

Unlike in the case of £, it is difficult to derive even the limiting behavior analytically
in the case of three-point correlation function, and we have to resort to numerical
integrations. First, we need the explicit direction-average of the triangles corre-

sponding to (3.4.29). The result of the direction-averaged three-point correlation



66

) (
g9, g®

3. DYNAMICS AND STATISTICS IN THE UNIVERSE

10’

o, = 300 km/s

[ ‘ | I I ‘ | I | ‘
A 1 10
separation (h"'Mpc)

10

Figure 3.13: Two-point correlation functions in redshift space for the power-law model in real space.

Solid line shows the function in exponential case. Dashed line shows the function in Gaussian case.

In both cases, the velocity dispersion o is set to be 300km/s and the power-law index v = 1.8.

function in redshift space (see Appendix A of Matsubara 1994a) is

C(S)(51275237531)

—/ dv1dvzd03fa(vl)fa(vz fcr 1)3 / dbqy Slﬂ912/ d¢f 7“1277”2377“31)

where

(3.4.45)

rio = Ho_l\/(vl v9)? — 2Ho(v1 — v2)s12 cos by2 + Hisiy

ro3 = H_l\/(vz v3)? — 2Ho(vg — v3) 823 €08 Oa3(bh2, ¢) + HE sk,

ra = Hy \/(v3 —v1)? — 2Hy(v3 — v1)831 cos 031 (019, @) + His%
) =
) =

COs 923(‘9127 45
COs 931(9127 45

— sin p sin #y5 cos ¢ — cos p cos O,

(812 COS 012 + 823 cos 023(0127 ¢)) /831

2
57p + 523 — 531

2512593

gozarccos( ) (0 < < ).

The upper panel of Figure 3.14 shows the result of numerical integration of equa-

tion (3.4.45) with various o in the case of s15 = s23 = s3; (equilateral configurations™),

*We display the result concerning three-point correlation function only for equilateral configu-
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Figure 3.14: upper panel: The two- (lower lines) and three- (upper lines) point correlation functions

in redshift space. The assumed two- and three-point correlation functions in real space are power-

law and hierarchical forms, respectively, which are shown by dotted lines.

For the three-point

correlation functions, horizontal axis shows the size of equilateral configurations. These functions
are displayed for five different velocity dispersions ¢ = 100,200, 300,400, 500km/s (from top to

bottom). In each case, the power-law index v is set to be 1.8 . lower panel: The value @, from

two- and three-point correlation functions in redshift space in the upper panel of this figure. Open

triangles for o = 100km/s, filled triangles for ¢ = 200km/s, open squares for ¢ = 300km/s, filled

squares for o = 400km/s, open circles for ¢ = 500km/s.
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where we assumed that the hierarchical ansatz (3.1.2) with @ = 1 and power-law

property (3.1.1) are exact, i.e.,
C(T)(Tl% 723, 7"31) = T(QJ’y [(7“127a23)_’y + (7'237a31)_’y + (T’31T12)_’y] . (3446)
with v = 1.8 and adopted the exponential distribution for f,(v) (equation [3.4.12]).

3.4.6 Hierarchical relations in real and redshift spaces

We have obtained the relation between the correlation function in real space and
direction averaged correlation function in redshift space especially for two- and three-
point in our model (3.4.9) or (3.4.27). We next consider whether or not the (lowest)
hierarchical relation (3.1.2) is preserved under the transformation from real to red-
shift space. When the hierarchical relation (3.1.2) holds in real space, the left and
right hand sides of (3.1.2) in redshift space can be estimated as in the previous sec-
tion. We define the scale-dependent @) by equation (3.2.12). We will denote these
quantities in real space by (), and in redshift space by Q. The value Q/Q, for
equilateral configuration (s;5 = S93 = s3;) in redshift space is plotted in the lower
panel of Figure 3.14 where we assume the power-law two-point function (3.1.1) and
the hierarchical three-point function (3.1.2), so @), = const. In Figure 3.14, the
model (3.4.9) where o is common for N = 2,3 is used to see the qualitative scaling
of @,. From Figure 3.14, hierarchical relation is weakly broken on small scales,
< o/ Hy, with @, 20% larger than @), .

Let us note some technical points in evaluating the five-dimensional integral
(3.4.45), using the Monte-Carlo method. The integrand here has singularities at
either ri5 = 0, 193 = 0, or r3; = 0 which need careful treatment in the Monte-Carlo
integration. In order to remove the singularities, we have introduced a cut-off r. to

the hierarchical three-point correlation function in real space:
Clggrarchjal = C?TT(QJ’y [(rlr2)_’y —I_ (7.2743)_’y —I' (TBTI)_’Y] . (3447)

More explicitly, we consider the three-point correlation function in real space of the

form,
C(lg)grarchical(rﬁ Te, TC) (T31 < Tc)
: el Tes Ty T roz < r.<r
((r12,723,731) = C(h?f)emrc}ilcal( erTes ) (s ¢ 1) . (3.4.48)
Chlerarchlca.l(rﬁ 723, 7"31) (Tl? <r.< T23)
Clggrarchica.l(rl% T'23, 7"31) (Tc < Tl?)

ration, where the three sides of the triangle have the same size. We will denote the size simply by
r and s in real and redshift space, respectively.
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when 715 < o3 < r31. We have set r, = 0.02h"'Mpc in Figure 3.14. This value is
determined so that the Monte-Carlo integration converges sufficiently. We have to
admit this value r. is not negligible compared to our dynamical range 2 0.1A~'Mpc,
but some experiment of varying r. showed that the value r. in Figure 3.14 does not
affect the region for r 2 0.2h~*Mpc; if we increase r., the values Q,/Q, decrease a
little on scales < 0.2h~'Mpc but does not change on scales 2 0.2h7'Mpc. Thus the
lower part of Figure 3.14 for r 2 0.2h7'Mpc is not affected by the artificial cut-off
r. = 0.02h~'Mpc.

3.4.7 Comparison with N-body simulations

In this section, we apply our model to N-body simulation data described in section
3.2 and consider whether or not the hierarchical relation in redshift space implies
that the similar relation exists in real space. In section 3.2 we find that the low-
density cold dark matter (LCDM) model is a counter example of this statement.
Our subsequent analysis show that standard cold dark matter (SCDM) model is
also consistent with hierarchical relation in redshift space but not in real space.
In this section, we use the data of the N-body simulation for both SCDM and
LCDM models for the distribution in real space. We will try to reproduce the direct
simulation result in the framework of our semi-analytical model presented here.

So far we have assumed the power-law model for two-point correlation function
and the hierarchical model for three-point correlation function. Here we use corre-
lations £, () of simulation data. They are substituted in equations (3.4.6) and
(3.4.8). In Figure 3.15 is plotted the result for the two-point correlation function.
The filled circles indicate the two-point function in real space of simulation data.
The lines show the direction averaged two-point correlation function in redshift space
(eqs.[3.4.6] and [3.4.29]) where the correlation in real space () directly evaluated
from simulations is substituted in equation (3.4.6). We adjusted the value o3 by least
square method in linear scale to match the correlation in redshift space in simulation
data which is plotted in open triangles. Solid line shows the case for exponential
model (3.4.12) and dashed line for Gaussian model (3.4.13). The best fitted values
oy are also indicated in the figure. The agreement between our model and the data
is surprisingly good on small scales < 2h~!Mpc. The systematic deviation on large
scales should be ascribed to the density-velocity coherence in linear theory (Kaiser

1987) which is not included in our model.
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Figure 3.15: The two-point correlation functions in real space (filled circles) and in redshift space
(open triangles) for SCDM (upper panel) and LCDM (lower panel) models. The prediction of
our exponential model (solid lines) and Gaussian model (dashed lines) are shown. The best fitted

values o5 are also indicated.
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The similar plots and the best fit of o3 are shown in the upper panels of Fig-
ures 3.16, 3.17 for () and () of the equilateral configuration.  As above, the
three-point function in real space () is directly evaluated from simulation data.
Comparing the best fit of o3 with that of oy, we can see g3 ~ 1.703 nearly indepen-
dently of the models considered (SCDM or LCDM, and Gaussian or exponential).
Thus, the velocity-correlation-modified model (3.4.27) agrees well with the data
while the model (3.4.9) with common o does not agree well with the data. The
agreement is quite good in spite of many approximations in section 3.4.3. The
expected property oy < o3 discussed in section 3.4.3 is satisfied.

The results for @), and ) are plotted in the lower panels of Figure 3.16, 3.17.
For the denominator in definition (3.2.12) for our model (solid and dashed lines),
we employed the value from data (open triangles in Figure 3.15).

Thus, using velocity-correlation-modified model (3.4.27), we can successfully re-
produce the direct simulation result in which the redshift-space correlation functions

exhibit the hierarchical structure while the real-space correlation functions do not.

3.5 Discussion

We have ignored the Hubble flow for the bound systems and we have considered
only peculiar velocities in comoving coordinate. In the case of a pair of galaxies
in a gravitationally bound system with physical separation ryys, for example, we
get the relative peculiar velocity — the Hubble flow — Hyrppys in addition to the
true peculiar velocities in physical coordinate vy,v,. Such Hubble flow would not
dominate our model because the typical peculiar velocity vpe. ~ v1 ~ v are greater
than Horppys; in our universe, a typical size of gravitationally bound systems, i.e.,
clusters of galaxies, is ~ 1h~™'Mpc. So the Hubble flow Hyrpny. for the bound
systems in our Universe hardly exceeds ~ 100km/s. Though our analysis on scales
< 1h~'Mpc can be affected by the Hubble flow, the effect is expected to be small.
The accurate estimation to this effect would be difficult because the corresponding
scale in our universe has not yet virialized and is likely in the process of virialization.
We will not address further details of this subject because it requires a proper
understanding of fully nonlinear dynamical behavior.

At this stage we have to admit that the present analysis does not completely an-
swer the problem why )5 ~ 1 at least in the SCDM and LCDM model. Quantitative

account of this is probably too complicated due to the intrinsically nonlinear nature
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Figure 3.16: wupper panel: The three-point correlation functions for equilateral configurations in
real space (filled circles) and in redshift space (open triangles) for SCDM model. The prediction of
our exponential model (solid lines) and Gaussian model (dashed lines) are shown. The best fitted
values o3 are also indicated. lower panel: The value @, and @ corresponding to the upper panel

of this figure. The meaning of symbols are the same as the upper panel.
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of the problem. We can, however, qualitatively argue the reason for the tendencys;
the value (), and (), depends sensitively on both two- and three-point correlation
functions. The three-point correlation functions in real and redshift space, (), (),
behave as (£(7)2, (£(2))2, respectively, but the deviations in factors from such behav-
ior of order unity result in scale-dependent @), and/or @, of order unity. In redshift
space, however, two- and three-point correlation functions are smoothed through
equation (3.4.9). The typical smoothing scale is given by dispersion of peculiar
velocities, o ~ 500km/s, so it is ~ 5hA~'Mpc. Thus the deviations in correlation
functions in redshift space are smoothed out on scales below ~ 1h7!Mpc. As a
result, the value @), is also smoothed on such a scales and tend to be a constant.
Glancing over the lower panels of Figure 3.16, 3.17 we would think that ), should
be ~ 2. Nevertheless, the property o, < o3 decreases the value of ()5 and results
in J; ~ 1. Note that this is a qualitative picture and we have not understood the
machinery of why (), ~ 1 quantitatively. Is this a universal phenomenon in non-
equilibrium gravitational systems or just an accident? It would be interesting to

pursue this problem.

3.6 STATISTICS OF ISODENSITY CONTOURS IN REDSHIFT SPACE

The redshift contamination for the statistics of isodensity contours is also of great
interest. Practically, the statistical tests of cosmology using the isodensity contours
are performed in redshift space in which the density field is statistically anisotropic.
So far the analytic expressions for statistics of isodensity contours GG, G5, N3, Ny,
N; have been derived only for isotropic fields (section 3.3).

The growth of the density fluctuation of the universe on large scales is described
by linear theory in the gravitational instability picture of the structure formation
(e.g., Peebles 1980). Thus, if the initial fluctuation is a Gaussian random field
as is often assumed, the statistics of isodensity contours of the density field with
large smoothing length should obey the random Gaussian prediction. Because the
known analytic expression for Gaussian random fields is for the isotropic field, this
Gaussianity test of the initial fluctuation should be performed in real space which is
not feasible in reality. It is not obvious whether or not the redshift space distortion
strongly affects statistics of isodensity contours. As for the genus, Melott, Weinberg
& Gott (1988) found by analysis of N-body simulations that genus is hardly affected

by redshift space distortion when the smoothing length is larger than the correlation
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length ~ 52~ Mpec.

In this section, the redshift space distortions of statistics of isodensity contours
G, Gy, N3, Ny, Ny are studied analytically by linear theory of gravitational insta-
bility assuming that the initial fluctuation is a Gaussian random field (Matsubara
1994¢). These statistics will be accurately determined with the future redshift sur-
veys. Our approach provides the Gaussianity test which can be directly performed
in redshift space. Moreover, the redshift space distortion generally depends on the
density parameter of the universe and our formula could in principle discriminate

this parameter.

3.6.1 Field correlations in the distant-observer approximation

Kaiser (1987) showed that the distortion of power spectrum in redshift space P©) (k)

from that in real space P")(k) is given by the simple formula as
2
PO(k) = [1+ fu?| PO(k), (3.6.1)

where p is the cosine of the angle between the line of sight and the direction of
k and f(Q) = H_ID/D ~ 0% D is the linear growth rate and H is the Hub-
ble parameter. The omega-dependence of f(§2) is approximately the same in the
presence of cosmological constant A (section 2.2.1), and we use this approximation,
[ ~ Q%% extensively in this section. This simplicity of equation (3.6.1) relies on
the approximation that the sample volume is distant from the observer. Inhomo-
geneity of the redshift samples closer to the observer is not negligible as well as
the anisotropy and prevent to give the simple expression as in equation (3.6.1).
When the sample volume is distant from the observer, the direction of line of sight
is approximately fixed in the sample volume. We call this approximation fixing
the line of sight as ‘distant-observer approximation’. Adopting this approximation,
the Cartesian coordinates in which the line of sight is fixed is convenient for our
purpose. The Cartesian coordinates make the calculation of statistics of isodensity
contours easy. Our distant-observer approximation exactly reproduces Kaiser’s re-
sult (equation [3.6.1]) which is derived by first introducing the spherical coordinates
and then approximating that the sample is distant from the observer. Our approach
depends on the Cartesian coordinates from the beginning and it would be useful to
see directly the equivalence of the Kaiser’s approximation and our distant-observer
approximation. The derivation of Kaiser’s result in Cartesian coordinates is simpler

as we will see in the following.
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In the Cartesian coordinates of our distant-observer approximation, we define the
direction of the line of sight by an unit vector 2. Using the line-of-sight component
of a peculiar velocity field U(r) = v(r) - 2, the mapping of the coordinates from the

real space to the redshift space is given by
s(r)=r+ —[U(r) — U(0)]. (3.6.2)

The observer is placed on the origin of the coordinates, 0. On large scales we are
interested in, we can relate the number density of galaxies in redshift space pgs) and
that in real space py) by evaluating the Jacobian of the mapping (3.6.2) resulting
in | .

o) (s(r)) = (1 + oz VU(T)) o0 (). (3.6.3)
Leaving only linear order in density contrast 6 = p/p— 1 and peculiar velocity field,

this relation reduces to

56 (r) = 60) () — %z VU (r). (3.6.4)

The peculiar velocity field in linear theory (Peebles 1980) is, in growing mode,
v(r) = —HfVAD(r), (3.6.5)

where A~! is the inverse Laplacian and é{") is the mass density contrast in real
space. In the following, ¢, and ¢, are assumed to be proportional to each other.
This assumption is called linear biasing: 6, = bd,,, where b is the bias parameter
which is a constant. The relation between the density contrast in redshift space and

in real space is, up to linear order,

690(r) = [L+ f07 (2 V)20 60 (r), (3.6.6)

g g

or, in Fourier space,

5 (k) =

g

1+ fb! (gkkﬂ 8 (k), (3.6.7)

which is Kaiser’s result.

In the following, we use the parameters o; and C; defined by

o}(R) = K dk k¥ PO(YW?(ER), (3.6.8)

27?2

C;(Q) = %/_11 dpp® (1 + fb‘l/ﬁ)z, (3.6.9)
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where W (z) is the Fourier transform of the window function to smooth the noisy
field of galaxy distribution. The two popular windows are the Gaussian window
Wea(z) = exp(—2?/2) and the top-hat window Wry(z) = 3(sinz — z cos x)/z°. We
assume that the window function is an isotropic function. The rms o(*) of density

contrast in redshift space is given by
2
(0(5)> = Coog. (3.6.10)

We define the following normalized quantities,

5%) _ 0 5R 8;0;6%)

(s)

where 657 is the smoothed density contrast in redshift space. These quantities obey
the multivariate Gaussian distribution in linear theory if the primordial fluctuation
is a random Gaussian field. The multivariate Gaussian distribution is completely
determined by the correlations of all pairs of variables. For our purpose below, the
statistics of quantities o, f3;, wyy (1 =1,2,3; I,.J = 1,2) is sufficient. Choosing the
coordinates in which the line of sight is the third axis, all the correlations among

the above quantities at some point are as follows:

1 /C 2
<OéwIJ> = 5 (F(l) — 1) 0(1)25[J,
1 Cl 0'12
— (1 - = )
i) =5 (1= ) Tobun
(Brps) =0,
Cl 0'12
(Biwry) =0,
1 2C )\ o2
(wrgwkr) = (1 - + —2) —22 (0rg6KL + 61k6sL + 61007k ) -
8 Co  Co/ og

It is more convenient to consider
(:BIJ :w[J—Oé<Oéw[J>, (3612)

instead of wry. The new set of variables «, 3;, @y distribute as multivariate Gaussian

and the non-vanishing correlations of these variables are only
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1 Cl 0'12

) = (g = 5 (1- ) 2.
Cl 0'12
<ﬂ3ﬁ3> = 600__027

~ o~ ~ ~ 1 20 C C 2 2
(@11@11) = (W2at022) = 2 lS (1 sy _2) —9 (1 _ _1) 72] 0_227

8 Co Co C(0 UO
SO | 20, Cz) ( 01)2 2| o3
Bnln) = 3 Kl & o) P\t a) o
~ o~ 1 201 02 0'2
<w12w12> = g (1 — 70 + Fo) 0—22,

where v = o2 /(0003).

3.6.2 Statistics of isodensity contours

Let us derive the formula of statistics of isodensity contours in redshift space. In

the following, the primordial fluctuation is assumed to be a random Gaussian field.

Genus statistics

The genus is minus one-half times the Euler number. The Euler number density of

isodensity contours is evaluated by
number of maxima + number of minima — number of saddle points (3.6.13)

of the contour surfaces with regard to some fixed direction. The expectation value

of Euler number of the isodensity contours per unit volume is (Doroshkevich 1970;

Adler 1981; Bardeen et al. 1986)

nI(v) = (8(a = r)8(81)8(8:)|Bal(wnnwn — wh)) (3.6.14)
(s)

where the isodensity contours are defined to be the surface &5’ = vo®. This
expression is valid even for general anisotropic fields. Using new variables wy; in
equation (3.6.14), the following result for the expression of genus G in redshift

space is derived:

1 3v3 [C C
GO () = ——n®) () = 22 21 (1 . —1) a0 3.6.15
)= 20w = 22O (DY a0, ey
where, from equation (3.6.9),
6 .., 3, .,
4 11+5fbl+?(fbl)2

o , (3.6.16)
Co 34 %fb‘l + %(fb‘l)z
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and G") is genus in real space (Doroshkevich 1970; Adler 1980; Bardeen et al. 1986;
Hamilton et al. 1986) given by

1 g ? 2
GOW) = ———=—] (1 —vHe /2 3.6.17
0= () -0 B.6.17
The redshift space distortion does not alter the shape of genus as a function of
density threshold and only the amplitude is affected. The £ dependence of the
change in amplitude is plotted in Figure 3.18 (upper panel). The effects of redshift
space distortion is small for 26753 less than unity. This fact is in agreement with

the N-body analysis of Melott, Weinberg & Gott (1988).

2D Genus statistics

The next statistics we consider is 2-dimensional genus. This statistics is defined in
the 2-dimensional flat plane S in 3-dimensional space. The density field calculated in
3-dimensional volume defines the high density points in the plane which constitute
the excursion set on the plane. The 2D genus is defined by the number of contours
surrounding high density region minus the number of contours surrounding low
density regions (Adler 1980; Coles 1988; Melott et al 1989; Gott et al. 1990). The
redshift space is anisotropic by the presence of the special direction, line of sight,
so the 2D statistics depends on the angle s between the plane S and the line of
sight. The alternative, equivalent definition of 2D genus is useful in the following.
For some arbitrarily fixed direction in the 2D surface, the maximum and minimum
points are defined on the contours. These points are classified into upcrossing and

downcrossing points with respect to the fixed direction. The 2D genus is defined to

be

1 : . . .
—(number of upcrossing minima — number of upcrossing maxima
2
— number of downcrossing minima 4+ number of downcrossing maxima),

(3.6.18)

of the contour lines with regard to some fixed direction in the plane S. The latter
definition can be used to obtain the following expression for 2D genus per unit area

of the plane:

GO (v, 05) = —% (8(cc — 1)8(B1)| B2 sin Bs + B3 cos Os|wry) . (3.6.19)
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Figure 3.18: Upper panel: amplitude of genus in redshift space relative to that in real space. Lower
panel: relative amplitude of 2D genus. The angles between the slice and the line of sight are
fs = 0°, 15°, 30°, 45°, 60°, 75°, 90° (from upper line to lower line).
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The corresponding expression in case of the isotropic 2-dimensional field is appeared

in Bond & Efstathiou (1987). From this expression, we obtain

Ggs)(l/, 0s) = g¢<1 - %) [1 - % + (% - 1) cos? 95] Gg)(l/)- (3.6.20)

To derive this result, we use iy rather than wq;, then regard the variables «, fy,
Py sinfs 4+ B3 cosfs and &y as independent variables. The 2D genus in real space

Gg) has the following form:

2
(T) . 1 01 _.2
Gy (v) = L (\/ﬁao) ve /2, (3.6.21)

The redshift space distortion again affects only amplitude of 2D genus. The de-
pendence on € and fs of the change in amplitude is plotted in Figure 3.18 (lower
panel). The dependence on the direction of the plane 05 for large 2 can be used to

determine the cosmological parameter by this statistics.

Area of isodensity contours

The area of isodensity contours per unit volume (Ryden 1988; Ryden et al. 1989)

V) = (8o —v)/57 + 57 + 57 ). (3.6.22)

This expression is valid even for general anisotropic fields. Introducing spherical

is given by

coordinates for (3;, the above expression is calculated to be

il /ﬁ_/l<3_01_1)
NP () = L2 ,/%— N N (),
2

2
EC I NN (Y EC
Co CO 2 CO
(3.6.23)
where NBET) is the area in real space given by
2 2
NO () D=2, (3.6.24)

" VBroo

Again, only the amplitude is affected. The 2 dependence of the amplitude is very
weak as plotted in Figure 3.19 (upper panel).
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Figure 3.19: Upper panel: amplitude of area statistics in redshift space relative to that in real
space. Middle panel: relative amplitude of length statistics. The angles between the slice and the
line of sight are s = 0°, 15°, 30°, 45°, 60°, 75°, 90° (from upper line to lower line). Lower panel:
relative amplitude of level crossing statistics. The angles between the crossing line and the line of
sight are 6 = 0°, 15°, 30°, 45°, 60°, 75°, 90° (from upper line to lower line).
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Length of isodensity contours in planes

As in the case of 2D genus statistics, 2-dimensional flat plane S is considered in the
statistics of length of isodensity contours. The length of intersections of isodensity
contours and the plane S was introduced by Ryden (1988). For isotropic density
fields, this statistics is proportional to the area statistics considered in the previous
section. As shown below, for anisotropic fields in redshift space, the proportional
factor depends on the direction of the surface S relative to the line of sight. The
angle 05 between the plane S and the line of sight is relevant as in the case of 2D
genus statistics. The expectation value of length of isodensity contours in the plane

S per unit area of the plane is given by

NQ( )(1/ 0s) = < (o —v) \/ﬁ1 + (B sin Os + 33 cos Os) > ) (3.6.25)

To evaluate the above equation, note that «, #; and (3 sinfs + (3 cos s are non-
correlated, independent variables. Introducing the polar coordinates for the latter

two variables, the following expression is obtained:

N()Z/Gs \/_¢1——1 ﬁ—l)coszﬂs

(% - 1) cos? O

N (1), (3.6.26)

where E(k) is the complete elliptical integral of the second kind:

[ R, (3.621)

and NQ(T) is the expectation in real space:

WWWZEN@' (3.6.28)

The redshift space distortion affects only amplitude as other statistics considered in
this section. The dependence on ) and f5 of the amplitude is plotted in Figure 3.19
(middle panel).

Contour crossings

Contour crossing statistics is the mean number of intersection of a straight line

and the isodensity contours. This statistics of large-scale structure is introduced
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by Ryden (1988) and extensively studied by Ryden et al. (1989) using numerical
simulations and redshift observations. For isotropic density fields, this statistics
is also proportional to the area statistics. In redshift space, the density field is
anisotropic and this statistics depends on the angle 87 between the direction of the
line I, and the line of sight. The mean number of crossings per unit length of the

line L is given by
NO(v,0,) = (§(c — v) | By sin O, + B3 cos b ) . (3.6.29)

This expression is evaluated by noting that « and [y sinfy 4+ 3 cosfr are non-

correlated, independent variables, resulting in

N0 01) = ¢ IS % * (% ~ 1) cos s (), (3.6.30)

where NI(T) is the expectation in real space:

N (v) = % (). (3.6.31)

Again, the redshift space distortion affects only amplitude. The dependence on )
and 07, of the amplitude is plotted in Figure 3.19 (lower panel).

3.6.3 On the value of ()

The strength of the effects of redshift space distortion is different according to which
statistics is focused on. The characteristic point in linear theory is that all the
statistics in redshift space considered above has the same shapes as in real space
as functions of density threshold. The redshift space distortion affects only on the
amplitude.

As for genus G(v) and area N3(v), the redshift distortion of amplitude is small
for 0 < Qb~%% < 1 (Figure 3.18, 3.19). This property justifies the comparison
of the observational redshift data and the theoretical Gaussian prediction in real
space [equation (3.6.17) and equation (3.6.24)] at least in linear regime. In the
Gaussianity test of primordial fluctuation using genus and area statistics, the effect
of redshift space distortion can be ignored approximately. The similar statistical
measure of galaxy clustering, the skewness (63)/(62)? induced by weakly nonlinear
evolution from the Gaussian primordial fluctuation is recently reported not to be
affected much also by redshift space distortion (Juszkiewicz, Bouchet, & Colombi
1993; Hivon et al. 1994).
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The direction dependent statistics, 2D genus (G5, length statistics Ny and crossing
statistics IV; are shown to exhibit the dependence on ) and the direction to define
statistics. In Figure 3.20 plotted the direction dependence of these three statistics.
The direction dependence of amplitude of these statistics is relatively large: for
Qb5 = 1, the amplitude varies more than 20 % while for Qb=°/ = 0, the ampli-
tude does not varies and is equal to the one in real space. The direction-dependence
depends on Q6753 and the statistics G5, N, and N; are three independent indi-
cators to determine the cosmological parameters. The redshift space distortion of
power spectrum (equation [3.6.1]) or two-point correlation function of Kaiser’s re-
sult recently used for determining the parameter Q6~%/% (Hamilton 1992; 1993; Fry
& Gaztanaga 1994; Cole, Fisher & Weinberg 1994). Gramann, Cen & Gott (1994)
introduced the ratio of density gradients ((98)/dr))?) /(96 /Or)?), where 1, 7|
are spatial component of line of sight and its perpendicular component, as a dis-
criminator of Qb=%/3. This ratio is equal to 3C;/Cy in linear theory. Our results can

be used as complementary ways of these observations.
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Figure 3.20: Relative amplitude of direction-dependent statistics as functions of the angle between
the line-of-sight and the plane or the line on which the statistics are evaluated. Five cases Qb=5/3 =
0.125, 0.25, 0.5, 1.0, 2.0 (from upper line to lower line at § = 90°) are plotted in each panel. Upper

panel: 2D genus. Middle panel: length statistics Lower panel: level crossing statistics.
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Biasing and Statistics in the Universe

4.1 THE BIASING IN THE UNIVERSE

To compare observations of distribution of cosmic objects with theories of primordial
fluctuation, there exist a difficult problem that the present mass density is not the
same with the number density of cosmic objects.

Various models on generating the primordial fluctuation of the universe predict
different statistical properties of the universe. For instance, simpler inflationary
models naturally predict the Gaussian initial fluctuation with scale-invariant primor-
dial power spectrum (Guth & Pi 1982; Starobinskii 1982; Hawking 1982; Bardeen,
Steinhardt & Turner 1983). On the other hand, topological defects (see, e.g., Kolb
& Turner 1990; Vilenkin 1985) such as global monopoles, cosmic strings, domain
walls or textures produce various non-Gaussian fluctuation as well as various non-
simpler inflationary models (Allen, Grinstein & Wise 1987; Kofman & Linde 1985;
Ortolan, Lucchin & Matarrese 1989; Salopek & Bond 1990; Salopek, Bond & Efs-
tathiou 1989; Hodges et al. 1990; Salopek 1992), the explosion model (Ikeuchi 1981;
Ostriker & Cowie 1981), and so on. Density fluctuation generated by various mod-
els determines the statistical properties of mass distribution of the present universe
which are subjected by the subsequent gravitational evolution.

The mass distribution, however, can not be observed directly. We can directly
observe the luminous cosmic objects, such as galaxies, clusters of galaxies, QSOs, X-
ray clusters, etc. Generally, the number density of luminous cosmic objects of some
kind is not proportional to the mass-density field and is biased tracers of mass.
The relation between the number density field pr(r) of the luminous objects and
the density field py(@) of underlying mass has the essential effects on determining
the mass distribution of the present universe. These two fields can be considered as

nonlocal functionals of a primordial fluctuation field. If we can express the relation of

87
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those two fields, the relation generally should be a functional as pp(v) = Fr[p,(@)].
We assume this type of relation ezists in this chapter and explore the statistical
consequences of this relation of biasing. This functional depends on the physical
process to form the luminous objects and the primordial fluctuation of the universe.

As an example, in usual biased galaxy formation scenarios (Kaiser 1984; Davis et
al. 1985; Bardeen et al. 1986; Coles 1989; Lumsden, Heavens & Peacock 1989), the
galaxies form at high density peaks of primordial fluctuation. Adopting this hypoth-
esis, the CDM model can explain the observations of two-point correlation function
(e.g., Davis & Peebles 1983) on small scales. However, recent observations as Au-
tomatic Plate Measuring Facility (APM) survey (Maddox et al. 1990), Queen Mary
and West field College Durham, Oxford and Toronto (QDOT) redshift survey (Efs-
tathiou et al. 1990; Saunders, Rowan-Robinson & Lawrence 1992; Moore et al. 1992)
suggest that the clustering of galaxies on large-scales 2 10h™'Mpc is stronger than
that of standard CDM model. It is pointed out that this discrepancy can be rec-
onciled by introducing nonlocally biasing mechanisms as quasor-modulated galaxy
formation (Babul & White 1991) or cooperative galaxy formation (Bower et al. 1993)
rather than the simple biasing by peaks.

Though the biasing by peaks is a simple model to investigate, more complicated
biasing is certainly present in reality. The real bias is determined by gravitational
and hydrodynamical mechanisms (Cen & Ostriker 1992, 1993), but the right form
of nonlocal bias is not known yet.

The local bias, represented by a function pp(r) = f(py(7)) instead of a func-
tional, is widely explored so far. Kaiser (1984) showed that the enhancement of
two-point correlation function of clusters relative to that of galaxies (see, e.g., Bah-
call & Soneira 1983; Klypin & Kopylov 1983; Hauser & Peebles 1973; Postman,
Huchra & Geller 1992; Mann, Heavens & Peacock 1993; Croft & Efstathiou 1994;
Watanabe, Matsubara & Suto 1994) can be explained by local biasing between
galaxy distribution and cluster distribution. He adopted a model that the biased
objects are homogeneously formed in the region where the value of underlying field
oy(7) is larger than the threshold v in units of rms o of underlying field, and then
calculated the two-point correlation function of the biased objects in high v, and
large-separation limit for random Gaussian underlying field. In this model, the bi-
asing is local and represented by a step function as pg(r) = 0(6(r) — vo). The
generalization of this result to N-point correlation functions or to the expressions

with loosened restriction on v and/or separation (Politzer & Wise 1984; Jensen &
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Szalay 1986) was performed. Further generalizations to the case in which the un-
derlying field has non-Gaussianity (Fry 1986; Grinstein & Wise 1986; Matarrese,
Lucchin & Bonometto 1986), and/or the case of general form of local biasing func-
tion which is not necessarily the step function (Szalay 1988; Borgani & Bonometto
1989, 1990). In these generalizations, however, the biasing is restricted to be local.

The biasing by peaks does not fall under the category of local bias. The av-
erage peak number density for Gaussian random field was analytically calculated
(Doroshkevich 1970; Adler 1981; Bardeen et al. 1986). Some approximations for
correlation functions of peaks are known (Bardeen et al. 1986; Otto, Politzer &
Wise 1986; Cline et al. 1987). Average peak number density for generally non-
Gaussian random fields for high-threshold limit is also known (Catelan, Lucchin &
Matarrese 1988). In the following, we provide the unified point of view for these
calculation of the statistics of generally biased field, and theoretical applications of

our formalism.

4.2 NON-GAUSSIAN RANDOM FLUCTUATIONS

4.2.1 Correlation statistics

We introduce first a homogeneous random field a(x) with zero mean in three-
dimensional space. For astrophysical applications, this random field corresponds

to, e.g., the smoothed density fluctuation,

on(@) = [ d*yWrllz - y])é(y), (4.2.1)

12 etc., depending on specific ap-

or normalized density fluctuation, dr(x)/(63)
plications. In the applications below, « is always regarded as normalized density
fluctuation. In the above notations, 6 = p/p — 1 is the density contrast and Wg
is the window function which cut the high frequency component higher than 1/R.

Two popular forms are the Gaussian window:

(G) N 1 1’2

and the top-hat window:

3
TH
W](% )(x) T ArR?

We review some correlation statistics for a general field o below (see also section

2.3).

O(R — z). (4.2.3)
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The probability distribution for a field « is specified by a functional Pla]. Av-

eraging (- --) is represented by a functional integration as

()= /[da] . Plal. (4.2.4)
The mean value of N-product of the field is called N-th moment:
i@y, an) = (al@) - al@y)). (1.2.5)
These moments are generated by the following generating functional:
2] = [ldalPlaexy [@ / deJ(w)a(w)] , (4.2.6)
through the functional differentiation:
B (—)N§NZ
8 J(my) -6 (=)

We usually use reduced moments rather than mere moments. The N-th reduced

(N (@y,... 2y) (4.2.7)

J=0

moment is defined by

M (@, .. 2n) = (alzy) ... a(ey)),, (4.2.8)

where (---)_ denotes “connected part” of the moment (Bertschinger 1992) removing
the disconnected parts from the moment. The reduced moments are called semi-
invariants or cumulants in probability theory and related to the connected Green’s
function in quantum field theory. When « is identified with the density contrast
0 as in section 2.3, the N-point correlation function £y in the continuum limit in
cosmology (e.g., Peebles 1980) is identical to the N-th reduced moment, neglecting
shot noise effect. When the statistics of a field « is Gaussian, the reduced moments
larger than or equal to third order are all vanish.

According to the celebrated “cumulant expansion theorem” (section 2.3, Ap-
pendix B), reduced moments are generated by logarithm of moment-generating
functional Z[.J]:

(—=)N6NIn Z
oJ(@y)---6J(2nN)

pM @y, 2y) = (4.2.9)

J=0

where 1(© is set to zero formally. Thus,
Z[J] = exp [Nz_jzm/d3:1;1---d3xN¢(N)(w1,...,a:N)J(azl)---J(wN)] (4.2.10)

provide a very useful way to tackle non-Gaussian random fields because it relates
the probability distribution functional P[a] and the reduced moments through the
equation (4.2.6).



4.2. NON-GAUSSIAN RANDOM FLUCTUATIONS 91

4.2.2 Generalized Wiener-Hermite functionals

We define generalized Wiener-Hermite functionals which play essential roles in our
analyses below. For a given random field a(@), the generalized Wiener-Hermite

functionals are defined by

H(m)(azl, cey @) = €Xp [% /d3xd3y0z(a3)¢_l(a3, y)oz(y)]

8 5oz(w(1_).1.)7.n;;l(wm) P [_%/dedBya(mW_l(w’y)a(y)] (4211

where ?)~! denotes an infinite dimensional inverse matrix of v/ defined formally by

[y @ )iy, ) = 8@ - 2), (4.2.12)

and 1 is an arbitrary function of two points in space in general situations. In the
following, we designate ¢ in the above definition of generalized Wiener-Hermite func-
tionals as 2nd reduced moment ¥ defined by equation (4.2.8) with N = 2. The
generalized Wiener-Hermite functionals are reduced to the Wiener-Hermite func-
tionals in the special case (x,y) = §*(¢ — y). The following functionals defined

by infinite dimensional linear combinations of equation (4.2.11) as

Hiy (@1, o) = [ @y d (@, 90) - (@ g, H (1 ,0),

(4.2.13)
are convenient for our purposes below. Note that we distinguish two classes of
functionals (4.2.11) and (4.2.13) by the place of (m). The latter functionals are also
called generalized Wiener-Hermite functionals. The generalized Wiener-Hermite
functionals defined above are the natural generalization of the generalized Wiener-
Hermite polynomials (e.g., Appel & de Fériet 1926) which have finite degrees of
freedom rather than three dimensional continuum degree of freedom. The first

several forms of H ., are

Hoy = 1, (4.2.14)
Hoy(2) = al=), (4.2.15)
Hy(@1, ) = a(@)a(wz) — (@, 22), (4.2.16)
Heg) (@1, @2, 23) = a@1)a(@z)o(2s)

— [(w1, @2)a(ms) + (@1, 23)a(@2) + (22, 23 ) (1)) (4.2.17)

H(4)(ﬂ317 Xy, T3, 2y) = a(@)a(@y)a(®s)o(e,)
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— (@1, 22)a(@s)o(@s) + (@1, T3)a(®2)a(@y) + 10 (@1, B4 (22) 0 5)

+ (@2, m3)a(@r)a(@s) + (@2, Ta)a(@r)o(@3) + h(@3, T4) o1 ) o(2)]

+ [h(@r, @2) (3, @4) + (@1, T3) 0 (2, Ta) + (@1, )10 (22, 23)] -
(4.2.18)

The generalized Wiener-Hermite functionals H(m),H(m) are symmetric about its
argument @1,...,&, and are regarded as functionals of a field a(«). Under linear

transformation of a field «:

o () = /dByM(a:,y)oz(y), (4.2.19)

the generalized Wiener-Hermite functionals transform as follows:

:/d3y1"'dgymM_l(wlvyl)'”M_l(mmvym)H(m)(ylv'"7ym)7 (4220)

= /d3y1 T dgymM(wlvyl) Y M(wmvym)H(m)(ylv s 7ym)7 (4221)

where M ™! is an infinite dimensional inverse matrix of M:
/dByM_l(a:, y)M(y, z) = 8 — 2). (4.2.22)

Thus, we can regard H(™) as infinite dimensional covariant tensors and Hm) as in-
finite dimensional contravariant tensors. In physical applications, the linear trans-
formation (4.2.19) is considered as smoothing of a field « if M is a low-pass filter
or is considered as the Fourier transform if M (@, y) = exp(—i@ - y). The following

recursion relation,

5
ba(y)

Himy (@1, 20) = Hing) (1, Zga )

(4.2.23)

@)~ [ dbizny)
are helpful properties of the functionals.

4.2.3 Expectation values

The averaging (4.2.4) for a non-Gaussian random field is reduced to the averaging

for a Gaussian random field using the generalized Wiener-Hermite functionals as we
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shall see below. First of all, with a given distribution P[a], we associate a Gaus-
sian distribution Pg[a] constructed by the 2nd reduced moment > of the original
distribution P[a]:

Pula] = Ne exp [—% / dedBya(w)¢_1(w,y)a(y)] , (4.2.24)

where Ng 1s a formal normalization constant:

Ng = { [1da]exp [—% / d3:1;d3yoz(a3)¢_1(a:,y)oz(y)]}_l. (4.2.25)

The averaging by this Gaussian distribution Pgle] is denoted as (- - ) g distinguished
from the averaging by the original non-Gaussian field: (---).

The relation between the non-Gaussian distribution P[a] and the Gaussian dis-
tribution Pla] is

o o
Sa(xy)  ba(xy)

T d3$N77Z)(N)(£131, P ,iEN)

] PG [Oé]
(4.2.26)

This relation is proven as follows: the generating functional Z[.J] is (infinite dimen-

Plo] = exp L:O =

sional) Fourier transform of distribution functional P[a]. Thus the inverse Fourier
transform gives the expression of P[a] in terms of reduced moments because of equa-
tion (4.2.10). Substituting 16/éca (@) for J(x), and performing Gaussian integration,
we finally arrive at the relation (4.2.26). Expanding the exponential of equation
(4.2.26) and using the definition of the generalized Wiener-Hermite functionals, we
can express non-Gaussian averaging of arbitrary functional F'la] by Gaussian aver-

aging as follows:
(Fla]) = (Flal)a

SO

n1=3 nm_3

7y

e [Tl Tl af)
=1

k=1 =1
% <H(n1—|— —I—nm)(mgl)7 o 7wgﬂl)’ L 7;13&)7 o 7w£:m))F[a]>G . (4227)

This equation is an expansion of a non-Gaussian averaging by higher order reduced
moments. The nontrivial part in the equation (4.2.27) is the factor of the form,
(HF)g. In Appendix B, the methods to calculate the Gaussian averaging of the
product of generalized Wiener-Hermite functionals, ([T H)g are developed. There-
fore, if a functional F[a] is expressed by the sum of the product of generalized
Wiener-Hermite functionals, the right-hand-side of equation (4.2.27) can be calcu-

lated as performed in the next section.
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4.3 DIAGRAMMATIC CALCULUS OF N-POINT CORRELATION FUNC-
TIONS

4.3.1 Generalized Wiener-Hermite expansion and diagrammatic methods

We are interested in the correlations of a density field pg(r,[a]) which appears by
some biasing mechanism from a field a(@). We formally do not restrict the form of
biasing in this subsection and consider a given, generally nonlocal, biasing functional
pe(7,[a]) which is both a function of a point » and a functional of a field a(@). It
is natural to expand this functional by the generalized Wiener-Hermite functionals

as Tollows:

> ]
= m/d:ag(;(l)...d%(m)mn)(7,_,,,3@)7...7,q_;,/xm))71{(”1)(;,,,.@)7,”7¢,,,,<m))

where the kernel K™ is given by

KO =2, r—2) = (RO, 2 pp(r, o)), (43.2)
6" pg(r,[a])
<5a(a:(1)) - bafmtm) >G - (4.3.3)

The equation (4.3.2) is derived from the orthogonality of the generalized Wiener-

Hermite functionals (B.20) in appendix B. We assume that the expansion (4.3.1)
exists for the nonlocal biasing of our interest. Using equation (4.2.27), the N-th

moment of a biased density field pg is given by somewhat complicated expression:

PN(Tl, . TN)E<PB(T1,[ ])"'PB(TN,[Oé])> (4‘3‘4)
) Z Z /Hﬁdg Hnﬂle.x["(mi)(ri—wz(l),...,ri—wz('mi))
i ) 25 5ot
ﬁﬁ 0 I R

X

N
< n1+ +nm 51)77ygn1)77y’£)’1L)77y£gm))HH(mz)(w2(1)77w2(ml))> ] :
: G

This expression can be calculated making use of the methods described in Appendix

B. The diagrammatic method in calculating Gaussian expectation value of the
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Figure 4.1: Diagrammatic rules for the nonlocal bias. The open circles and filled circles corresponds

to external points and vertices, respectively.

product of generalized Wiener-Hermite functionals is translated to the diagrammatic
method in calculating moments (4.3.5) of pg. The result is summarized as the

following procedures:

A-i) Draw N open circles corresponding to 71, ..., rx which we call external points.

A-ii) Consider one of possible graphs with lines between external points or between
external points and vertices. Vertices are the parts where three or more ends
of lines are gathered. Do not connect two vertices directly with lines. Do not
draw any line whose two ends are placed at the same external point or the

same vertex.

A-iii) Associate labels like @, y, etc. with ends of lines placed at external points (not

at vertices).

A-iv) Apply the correspondence of Figure 4.1 for the external points, lines between

external points and vertices. Make the product of these factors of the graph.
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A-v) Integrate with respect to all the labels and multiply the following statistical

factor:

1

H nL! H an

identical identical
lines vertices

(4.3.6)

where ny, and ny, are, respectively, the number of lines and vertices whose
ends are identical. This statistical factor is for the case we do not distinguish

vertices in the graph.

A-vi) Sum up values obtained from all the possible graphs.

The readers are invited to calculate several examples both by equation (4.3.5) and
by the above diagrammatic rules. The Appendix C is devoted to the explanation of
the statistical factor (4.3.6).

This diagrammatic rules enable us to easily calculate lower order terms about
™) or K™ Although we are not guaranteed the sufficient convergence of this di-
agrammatic expansion in the general situation, there are many cases in astrophysics
where this expansion is useful as we shall see in section 4.4.

The reduced N-point correlation function of the biased density field pg:

(1. ) = piN (w1, [a]) - pn(ras [o]). (43.7)

is more easily evaluated in this diagrammatic expansion because the contribution
to the reduced moment in equation (4.3.7) comes from connected graphs in our ap-
proach. This especially simplify the calculation of higher order correlation functions
of the biased field. Thus, the above rules are applicable to the calculation of reduced

N-point correlation functions substituting the following rule for A-vi).

A-vi) Sum up values obtained from all the connected graphs and multiply (P;)~".

4.3.2 Local and semi-nonlocal biases

Here we consider special cases of the above general consideration, i.e., the case
biasing is local or semi-nonlocal.
The local bias is defined so that the biasing functional pg(r,[«a]) is a mere func-

tion of the underlying field a at the position r:

pB = pB (a(r)). (4.3.8)
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In this case, the kernels [equation (4.3.3)] have the forms,

KM (e —a2® r—2™)=&F -2W)...80r -2™)R,,, (4.3.9)

R, = <ampB> . (4.3.10)

da™

If the field « is normalized so that (a?) = 1, R,,’s are coefficients of the Hermite

expansion of the local biasing function:
00 Rm
pela) = D WHm(a); (4.3.11)
m=0 .
1 o0 2
Ry = ——= /_Oo dae™ 1 pg (@) Hyn (). (4.3.12)

The definition of Hermite polynomials and its orthogonality relations are,

) A",
Hy(a) = e/ { == ) e /2 431
m(@) = e (da)e ) (4.3.13)
and
| e ]
NeT [ dee P ) () = b (4.3.14)

respectively. If the field « is not normalized and (a?) = o # 1, the corresponding

expansion is

OORm

pela) = Z WamHm(oz/U); (4.3.15)
m=0 :
1 o0 2 2
R, = —— dae= 127 )pB(oz)Hm(oz/U). (4.3.16)
V2romtl J oo

The special form of equation (4.3.9) reduce the diagrammatic rules A-i) ~ A-vi)

above to the following ones:

B-i) Same as A-i)
B-ii) Same as A-ii)

B-iii) Apply the correspondence of Figure 4.2 and make the product of these factors
of the graph.

B-iv) Multiply the statistical factor (4.3.6).
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lp(Z)(ri ’ rj)

’lp(”)(ri’rj,'--’rk)

Figure 4.2: Diagrammatic rules for the local bias.
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B-v) For Py, sum up values obtained from all the possible graphs. For reduced
N-point correlation function, sum up values obtained from all the connected

graphs and multiply (P1)_N

The above rules for Py could be expressed by the following equation:

o9 © R iyt R -
NN S DRI SIS DTS DL

m=0n11=0 n1 =0 nm1 =0 Ny N=0 m[H Hn]k'

7=1k=1
)a®eme) (11 N N) e (11, N N).
S—— S—— S—— S——
ni11 NN Nmi1 mN
(4.3.17)
where

w® = 0,
w (@) = 0,
w(z)(ivj) = (1 - 52']')1/)(2)(7°2',7°]')
w™ (i, i) =W (e, ) (> 3). (4.3.18)

Identifying the underlying field o with normalized density fluctuation ég(®)/(62)"/?,

this formula is an alternative expression to one obtained by Borgani & Bonometto
(1989, 1990) who adopted the different approach to treat the local biasing function
pp in evaluating the same quantity of equation (4.3.17). Our expression seems to
be simpler than theirs.

When the statistics of an underlying field is random Gaussian, equation (4.3.17)

reduces to
rkvrl
Py(Py,...,7 Z > H H R, (4.3.19)
m= O{T)’Lkl|m} k<l
In the above equation, 1 < k,[ < N,
me + Z Mg (4.3.20)
k=r+1

and 3y, [} Means the sum over my's (k < [) which are non-negative integers with
a constraint, >, ; my = m. We can see, using multinomial expansion theorem, that

the equation (4.3.19) is equivalent to the formula obtained by Szalay (1988).
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When the local biasing function pg is given by sharp clipping:
pe(a) = CO(a —v), (4.3.21)

then the coefficients R,, are given by

R6) — %erfc (%) =0 (4.3.22)

m Y

Tom Hnaa )2 (m 2 1)

where )
erfc(z) =1 —erf(x) = —/ e~ dt (4.3.23)
N

is a complementary error function. In this case, equation (4.3.17) reduces to the
formula obtained by Matarrese et al. (1986). If we, furthermore, constrain the
statistics of underlying field to be Gaussian, and local biasing function to be the
sharp clipping, we can find equation (4.3.19) reduces to the the formula obtained
by Jensen and Szalay (1986).

High-v limit of equation (4.3.17) for sharp-clipping biasing function (4.3.21) en-

ables us to sum up infinite series of graphs and results in

Py = 70 )
N V2rvev?/?

00 . 1 -
xexp | > v > T 'w( "(1,...,1,...,N,...,N)
m=2 Ny, n >0 1 N n\/_ .
nit+-+ny=m 1 n
(4.3.24)
C N
=\ 7= “nUi=v), (4.3.25)
2rver

NTI -

is a N-point moment generating function Zy(.J;) in which v is substituted for all
J;. This formula is equivalent to the one obtained by Matarrese et al. (1986). The
N = 2 case of equation (4.3.24) has the same form obtained by Grinstein & Wise
(1986).

The local bias is not relevant to the biasing through density peaks (Davis et
al. 1985; Bardeen et al. 1986; Coles 1989; Lumsden et al. 1989) because density
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peaks are described by not only the mere value of the underlying field but also
spatial derivatives of it (see section 4.4 for details). Thus, we next consider the case
that the biasing functional pg(r,[a]) depends on «(r) and finite-order derivatives

of it at 7, generally. We denote the spatial derivatives of a underlying field « as «,:

da o .
(@) = |ate), 220, 22 gy ] (13.27)
—— Ozt 0xtdx?
T O~ ———
3 6
where ¢ = 0,1,2,.... This notation enable us to write the semi-nonlocal biasing
functional as
pe(r.[a]) = pp (au(r)). (4.3.28)

In this case, kernels (4.3.3) have the forms,

KM(p —2® e =2ty =3"...3" 6, (r —a®) .6, (r —2"™) R,
H1 Um
(4.3.29)
where 6, denotes the derivatives of Dirac’s delta-function in the notation of equation

(4.3.27), and

d d
Ry, = <— e For pB(on)>G : (4.3.30)

day,

The special form of equation (4.3.29) reduce the diagrammatic rules A-i) ~ A-vi)

above to the following:

C-i) Same as A-i)
C-ii) Same as A-ii)
C-iii) Associate labels like u, v, etc. with ends of lines placed at external points.

C-iv) Apply the correspondence of Figure 4.3 and make the product of these factors
of the graph.

C-v) Perform sums with respect to all the labels and multiply the statistical factor
(4.3.6).

C-vi) For Py, sum up values obtained from all the possible graphs. For reduced
N-point correlation function, sum up values obtained from all the connected

graphs and multiply (P;)~".
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uy

O e O Yo (r 1)

YOl (FFy 1)

Figure 4.3: Diagrammatic rules for the semi-local bias.
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In Figure 4.3, ;/)E?U)(m, r;) denotes the derivatives of (¥ and p indicates the deriva-
tives with respect to r; according to equation (4.3.27), v indicates the derivatives

with respect to r;. Similar definition is applied to ;/)EZ)A(TZ, Cey TE).

4.3.3 Fourier transforms

The biasing may be expressed in Fourier space rather than in coordinate space. For
example, the transfer functions T'(k) of various cosmological models is a kind of
biasing in our context through Fourier space. It may be useful for the analyses in
the future to give the diagrammatic rules in Fourier space.

The Fourier transformation is a kind of the following linear transformations of a

field:
o'(k) = /deM(k,w)a(w) (4.3.31)
ph(p.0')) = [ drL(v,v)ps(r.fa]), (4:3.32)

where M and L correspond to the coefficients of the linear transformations. Fourier

transformations are achieved by setting
M(k,x) = exp(—ik - @), L(p,r) = exp(—tp - r), (4.3.33)

but we use general notations for a while. Because of the property (4.2.20), (4.2.21)
of the generalized Wiener-Hermite functionals, the form of equation (4.3.5) is un-
changed under linear transformations (4.3.32), if we demand the following transfor-

mation properties:

O (g, k) = /d?’xl---denM(kl,wl)---M(kn,wn)w)(wl,...,wn),

(4.3.34)
K0 (ps kD), k™)) = /d% / Ea® ... B2 [(p, )
x M~ Y aeW kD). .. M2 kYK (p — W e — ),
(4.3.35)
The equation (4.3.35) has the another expression,
57TL / !
5o/(k( )) o (5o/(k(m)) G

because of equation (4.3.3). These transformed quantities /' and K™ are equally

applied to the diagrammatic rules i) ~ vi) instead of the original quantities. This
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gives a way to calculate the correlations of a biased field expressed by linearly trans-
formed quantities (4.3.32).

Now we restrict the argument to the Fourier transformations (4.3.33). In this
case, from the inverse Fourier transformation, M~!(x, k) = exp(ik-2)/(27)>. Then

transformed quantities are given by

W (key, k) = 0 (R, k) = (27)28% Ry 4 - 4 k) p™ (Rt Ry,
(4.3.37)

and

1
(27)3m

K’(m)(p; EY k(m)) — (277)353(]@(1) R ACO p) R;(M)(k(l)7 o 7k(m)),

(4.3.38)
where @Z(”) and K (™ are the Fourier transformations of ) and K™ respectively.
Because of the homogeneity of a field «, the last expression of equation (4.3.37) is
possible and gives a definition of the multi-spectrum p(™ of a field a. In the case

n =2, p® is called power-spectrum of the field. The Fourier transform of K™ is

given by

K@D, k™) = (2r) <5&(k(1>)...5&(k(m))/(27§3PB(p’[a]>G’
(4.3.39)

from the equations (4.3.36) and (4.3.38). This form is convenient if the biasing func-
tional is expressed in Fourier space, noting that the Gaussian averaging in equation

(4.3.39) is given by

(--a :/ H [exp (_ |‘5/‘;’§]1|)) 2|5‘(f/)p|z§(k)| d;f] , (4.3.40)

k Euhs

in Fourier space, where uhs means a upper half k-space, 8, is a phase of a(k) so that
a(k) = |a(k)|exp(ify,). The power spectrum p(k) is defined by V= (|a(k)|*), where
V' is the total volume of the space. Substituting equations (4.3.37) and (4.3.38)
to our rules, moments Py or correlations E}BN) in Fourier space are obtained. The

multi-spectrum p]gN) (p1,---,Pn_1) Which is defined by

EN (prs- - opn) = 2128 (py + -+ )S (Prs - Pr1)s (4.3.41)

is more popular than E]gN).

The procedures to obtain Py are summarized as the following rules:
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g (k® - k? k")

- . p? (k)

p(n) (k(l), _ k(Z)’ o k("-l) )

Figure 4.4: Diagrammatic rules in Fourier space.

D-i) Draw N open circles corresponding to py,. .., py which we call external points.
D-ii) Same as ii)

D-iii) Define orientations to all lines and associate labels like k,1, etc. to all lines.
The orientations of a line k is regarded as a direction of a current k. The sum
of currents flowing into a vertex should vanish and the sum of currents flowing
from a external point 7 should be p; (these rules are due to the é-function in

equations (4.3.37) and (4.3.38)).

D-iv) Apply the correspondence of Figure 4.4 for the external points, lines between

external points and vertices. Make the product of these factors of the graph.

D-v) Perform integration [ d*k/(27)> for each label k and multiply the statistical
factor (4.3.6).

D-vi) Sum up values obtained from all the possible graphs and multiply (27)*8*(p; +
)



106 4. BIASING AND STATISTICS IN THE UNIVERSE

From the value of P; which can be evaluated by the above rules, the mean density

of biased field P, = pg is given by

Py(p) = (27)°6°(p)ps. (4.3.42)

Using pg, the rules for obtaining the multi-spectrum p]gN) of biased fields are as

follows:

E-i) Draw N open circles corresponding to py,...,py_; and py = —(p; + -+ +

Pn_1) which we call external points.
E-ii) Same as ii)

E-iii) Define orientations to all lines and associate labels like k,I, etc. to all lines.
The sum of currents flowing into a vertex should vanish and the sum of currents

flowing from a external point z should be p;.

E-iv) Apply the correspondence of Figure 4.4 for the external points, lines between

external points and vertices. Make the product of these factors of the graph.

E-v) Same as D-v)

E-vi) Sum up values obtained from all the connected graphs and multiply (pg)~".

4.4 THEORETICAL APPLICATIONS

4.4.1 The Edgeworth expansion of density probability distribution function

Recently, the Edgeworth expansion of probability distribution function P(6) of cos-
mological density contrast 6 is suggested to be useful in cosmology (Scherrer &
Bertschinger 1991; Juszkiewicz et al. 1994; Bernardeau & Kofman 1994). This ex-
pansion is suitable to obtain approximately density probability distribution function

when restricted number of cumulants are known. The expansion is (Bernardeau &

Kofman 1994)

1 > S. S. S3
. -2 /2 3 2 4 3
P(8) = Noreis ll + s Hiy(v)+ o (—24]{4(1/) + =) H6(1/))
S S55. S
3 —5 3-4 3 ...
+o (120]{5(1/) + o H:(v)+ 1296[{9(1/)) + ] , (4.4.1)
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o > T <I

(a) (b) (c)

@C@-é@@

(d)

Figure 4.5: Diagrams for the Edgeworth expansion.

where o = \/@ is rms of density contrast, v = §/0 is a normalized density con-
trast, and S, = (6™)./(6*)"! are normalized cumulants. We can see the coefficients
of Edgeworth expansion at arbitrary order are very easily calculated in our diagram-
matic methods as follows.

Density probability distribution function expressed as
P(6) = {(6p(6 — vo)) (4.4.2)

is appropriate to our purpose. Setting pg = ép(ac — vo), Eq. (4.3.12) reduces to
1

R, = We_”2/zﬂm(1/). (4.4.3)
Because ¢ (r,...,r) = 5,072, a vertex with n-lines corresponds to order "2,

Thus, diagrams of Figure 4.5 (a), (b), (¢), (d), ... give all the coefficients of order
o o', % o® ..., respectively. Applying rules B-i) ~ B-iv), the expansion (4.4.1)
is easily obtained. This example shows that our diagrammatic method can save the

labor of calculation.

4.4.2 Density peaks of Gaussian random fields

We focus on the statistics of density peaks in this section. Bardeen et al. (1986)
investigated the statistics of density peaks of random Gaussian fields identifying the
density peaks of primordial fluctuation with the sites for galaxy or cluster forma-

tion. They gave practical approximations to the N-point correlation functions of the
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density peaks. We show, in the following, that our method applied to density peaks
of random Gaussian field provides the improved approximations to the correlation
functions along the strategy of theirs.

In this section, the field a is identified with normalized density fluctuation
Sr(@)/(6%)"/2. The number density of peaks of the field o greater than a threshold
v is given by (Bardeen et al. 1986)

poe(r) = 0(a(r) — )6 (Dia(r)) (—1)° det (0(r) B (N (7)) 8 (o)) 8 (\a(r)

(4.4.4)
which is a semi-nonlocal bias in our context. In the above, A1, Ay, A3 are eigenvalues
of a matrix —(9;0;a). The approximation, which is common to Bardeen et al. (1986),
is to neglect all the derivatives of the two-point correlation (). Other correlations
N (N > 3) do not exist because of the assumption of Gaussianity of underlying
fluctuation. As an illustration, let us consider the case the power spectrum of
background fluctuation has the power-law form with spectral index n. In this case,
the two-point correlation ¢ (7) falls off as |r|~"*3) and the m-th derivative of the

n+3+m) - When n < —2, all the derivatives of two-point

function falls off as |r|~(
correlation function can be neglected even if ¢» ~ 1.

Adopting the above approximation, the rules C-i) ~ C-vi) for the semi-nonlocal
bias of random Gaussian underlying field are reduced to the rules A-i) ~ A-vi) for

the local bias of random Gaussian field with

o= () i) s

Note that this simplicity does not hold in non-Gaussian underlying field. Further
assumptions for higher-order correlations which can hardly be justified are needed
to have this simplicity for general non-Gaussian field (see the next section).

For the density peaks, equation (4.4.5) can be calculated using equation (A.18)
of Bardeen et al. (1986) and results in

) = i) (7)ot - %k?)m/véfxy) E:; 13

where

0@ () = / " doN©(a) (4.4.7)
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N (1) = =™ 2y, 70) (4.4.8)

(27)2R?
@_@q

[ def(a 2(1 =72
Gloses) = || def(0) i

flz) = z’ ; 3z {erf [(g)lﬂx + erf l 1/2 ]}
1 8
5

2\ [/312* 8 . 2 2
+ (5?) [( f +5) e~ /8+(%— ) o /2] (4.4.10)

and erf(x) is an error function:

- l_ (4.4.9)

erf(x / e~ dt. (4.4.11)
\/_
Spectral parameters o;, v, R, are defined by
dk
022. = 52 — kT2 P(k), (4.4.12)
2
v = L g = \/5017 (4.4.13)
09200 (o)
where P(k) is a power spectrum:

k) = o / Pre=®T )@ (@), (4.4.14)
equation (4.4.6) can be represented as one-dimensional integrations as derived in
Appendix D:

RR9(v) =
1 /00 2 v —T
— def(z)e™ Perfc (7) (m=0)
872R3 Jo [2(1 — ~2)
eV’ /2 o0 v—AT (x —qv)?
d H,_ - > 1
e ettt (2 e |- | 2

(4.4.15)

which have to be integrated numerically. In the high v limit, these coefficients reduce

to
1 (051

12372 0

To see the behavior of two-point correlation function of density peaks on large

R(Pk)(l/) i

m

H,pyo(v)e™ 72, (4.4.16)

scales which was described in Bardeen et al. (1986), we consider the case, (3 — 0.
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The two-point correlation function of peaks calculated by our method is, to lowest

order in
N (w
Epk(T1,72) = ( (pé{)( :

Nk (v)

The corresponding expression in Bardeen et al. (1986) [equation (6.12) of their paper]

) O (ry,7rs). (4.4.17)

b = (@)1, (4.4.18)

where
(x —7a)*

(@) = / dae=o"1? /OOO d:z;f(:z;)exp [_ 20— 72)] S (4.4.19)

(27) 2R3 [27(1 — 72)]1/2 L -~

The above two expressions are equivalent. In fact, explicit calculation (see Appendix

E) shows

. 4.4.20
Nk (v) ( )

In high v limit, ) = v21p2) which corresponds to Kaiser’s result (Kaiser 1984).
Jensen and Szalay (1986) give the expression of the autocorrelation functions of
regions in which the value of a field « is higher than a threshold v. Autocorrelation
functions of the thresholded regions are regarded as approximations for correlation
functions of peaks in high v limit in the context of biased structure formation in
astrophysics. Their formula can be derived by our method as shown in the previous

section: equations (4.3.19) and (4.3.22) derive their formula [equation (4) of their

paper],
PN(rlv rkvrl A 4491
serlo sy qpiteniogy (1421)
! m=0 {my|m} k<l
where
w R[] VIH S
0

Ve 2erfe(v/v/2)
Note that the definition of the Hermite polynomials are different from that in Jensen
& Szalay (1986). In the case of density peaks, it is obvious that the above quantities
AL should be replaced as follows:

AL (1) — APR)

m
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1 (m =0),
o0 v—n~T (v —qv)?
_ ﬁ 1 e;z/;m/o et (ﬁ) o [_ﬁ] (m > 1).
T = 00 279 v —nx
/0 dz f(x)e™ Perfe (m)

(4.4.23)

This quantities are easily evaluated by one-dimensional numerical integrations. This
expression for N-point correlation function [equation (4.4.21) and equation (4.4.23)]
of density peaks in Gaussian random fields is efficient than the methods developed in
Bardeen et al. (1986), especially for higher N. In practice, the expansion is summed
for arbitrary accuracy as in the Jensen and Szalay’s formula. Figure 4.6 shows the
various approximations for the two-point correlation function of peaks including
the approximations of Jensen and Szalay [equation(6) of Jensen & Szalay (1986)],
Bardeen et al. [equation (6.22) of their paper with n = 2], peak-background splitting
method developed by Bardeen et al. [equation (6.46) of their paper]|, Lumsden et
al. (1989)*, comparing with our method [equation (4.4.21) and equation (4.4.23)].
In the plot, the underlying fluctuation is assumed to be random Gaussian. We
use the smoothed power spectrum of standard cold dark matter model given in
Bardeen et al. (1986) with parameters & = 1,A = 0, and a Hubble constant of
50 km/s/Mpc. The smoothing length R is 0.22"'Mpc and the Gaussian window
(4.2.2) is adopted. Figure 4.7 shows the three-point correlation functions of peaks
in equilateral configuration for the approximations of Jensen and Szalay [equation
(4) of their paper with N = 3], peak-background splitting method [equation (6.53)
of Bardeen et al. (1986)], Jensen and Szalay with effective thresholds, comparing
with our method for the same underlying spectrum as in Figure 4.6. In the effective
threshold method, we use the same effective threshold as in the two-point correlation

function. In Figure 4.8 plotted the normalized three-point correlation function

5(3)(7‘17 T, TB)

5(2)(7°17 7“2)5(2)(7% 7“3) + 5(2)(7% 7“3)5(2)(7°37 7“1) + 5(2)(7°37 7‘1)5(2)(7’17 7“2) 7
(4.4.24)

Q

for approximations same as in Figure 4.7.

*They used Jensen and Szalay’s formula with effective threshold veg which is determined by
matching the two-point correlation function of Jensen and Szalay with that of peaks in large-
separation limit, i.e., veg 1s the solution of the implicit equation, A(lsc)(l/eff) = {a)(v) for each true

threshold v.
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Figure 4.6: Various approximations for the two-point correlation function of peaks in CDM model
(h = 0.5) for thresholds v = 1.5, v = 2.0, v = 2.5, and v = 3.0. The smoothing length is
0.2h~'Mpc and the Gaussian window function is adopted. Solid lines: our method. Dotted lines:
Jensen and Szalay (1986). Short Dash lines: peak-background splitting. Long dash lines: Bardeen
et al. (1986). Dot-short dash lines: Lumsden et al. (1989). Dot-long dash lines: original correlation

function of CDM model for reference. Normalization is not relevant for our analysis.
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Figure 4.7: Various approximations for the three-point correlation function of peaks in CDM model.
The configurations of three-points is equilateral and the length of edges of the equilateral triangle
is the horizontal axis. Solid lines: our method. Dotted lines: Jensen and Szalay (1986). Short

Dash lines: peak-background splitting. Dot-short dash lines: Jensen and Szalay with effective
thresholds.
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Figure 4.8: The normalized three-point correlation function of equilateral configuration for the

same approximations as in Figure 4.7.
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4.4.3 Weighted density extrema of non-Gaussian random field

The approximation adopted in the previous section does not work when the back-
ground fluctuation is not Gaussian random field. This is because in calculating the
biasing of the non-Gaussian random field, the higher order correlations at the same
point including derivatives such as (o?(x)Aa(x)) can not reasonably neglected. In
this section, we consider the density extrema with weighted factor according to the
second derivatives of the field (see below) above some threshold v, which can serve as
an approximation of the density peaks for high threshold. The method to evaluate
the density extrema of non-Gaussian random field to arbitrary accuracy is given in
the following.

The number density of weighted density extrema above threshold v we consider

in this section is
pext(r) = O0(a(r) — l/)53 (Diar(7)) (—1)3 det (0;0;a(r)), (4.4.25)

[¢f. equation (4.4.4)]. This number density field is for density extrema with weight
factor —sign[det (9;0;a(r))]. Forlarge threshold v, the number of maxima dominates
the number of minima and saddle points, and equation (4.4.25) is a reasonable
approximation for density peaks because the weight factor for density maxima is
+1. Otto et al. (1986) and Cline et al. (1987) investigated the average number
density and the correlation functions of this type of weighted extrema for Gaussian
random fields approximately. We are in the place to generalize these analyses for
non-Gaussian random fields.

The coefficients for the semi-nonlocal bias (4.4.25) is

Ry = R(k§ l, 12,13;p11,p22,p33,p23,p13,p12)
1 o 3= li—2 Zig i
(27)? (\/500)
x e/ [Hiyvo(v)Jo({pis }) — Hiegr(v)J1({pis })
+Hi(v) o({pi;}) — Hiea(v) J3({pi;})] . (4.4.26)

Hh (O)Hl2 (O)Hls (0)

The derivation of this result is given in Appendix F. In the above notation, the
number of indices corresponding to o, da/dz*, I?a/dx'Ox’ (i < j) among pur, ..., fim

are k, I;, p;j, respectively. For k = 0, we use the notation,

H_\(v) = ge”2/zerfc (%) . (4.4.27)
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O O—O
(a) (b)

Figure 4.9: Diagrams for neyx. and ey .

Table 5.1 gives the definition of Jy, J1, J> and J3 as functions of {p;;}. For cases
not listed in Table 5.1, J;’s are all vanish. We can calculate the number density
and the correlation functions of weighted density extrema of non-Gaussian field to
arbitrary accuracy in principle by using the coefficients (4.4.26) and rules C-i) ~ C-
iv) provided that the diagrammatic expansion converges. As primary examples, the
number density of weighted extrema ne(v) and the two-point correlation function
€ex. (1) of Gaussian random fields to leading order in ¢ are, from diagrams in Figure

4.9,

nex(v) = (2;2 ( 2100)36—”2/21{2(1/), (4.4.28)

ol (v

V2 =3\ E(r)  602(v? —3) AL(r 92 og ANE(r
ot = (22) )0 n ot £(r)

_ 1)2 of (1/2 _ 1)2 0.14 ’

(4.4.29)

where £(r) = ol(r). Otto et al. (1986) and Catelan et al. (1988) derived the
leading and sub-leading contribution of v to .. Our method provides a way to
calculate the same quantity not relying on the expansion in v.

In the high v limit, the leading contribution of v in each diagram is come from the
term which maximize k for each external point as seen from the expression (4.4.26).
Thus, considering the leading contribution of v is equivalent to considering the local

bias with coefficients

1 0-1 ? k .2
Ry = —— yir2em /2, 4.4.30
= w7 () 4:30)
Substituting these coefficients to equation (4.3.17), we obtain
1 ’ "
01 2 2
Py=|—+— vie Zn(J; = v). 41.4.31
' [(W () v A

The number density is

1 01 ? 2
P, = 2= 7, (v), 4.4.32
' (\/500) e @) ( )
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which was previously derived by Catelan et al. (1988) by using a different method.
The correlation function is calculated by taking the connected part of the following

quantity,
PN . ZN(J2 = l/)

PN [N
which is the same as in the biasing with sharp clipping in high v limit [equation

(4.3.25)].

(4.4.33)

4.4.4 Biasing and hierarchical underlying fluctuations

In this section, we consider the case that the underlying fluctuation satisfy the

hierarchical model of correlation functions (White 1979; Fry 1984);

EM(@y, ... en) = > QMY > ]ﬁl (D @y, 2p). (4.4.34)

trees (a) labelings edges (AB)

In the above symbolic notation, the edge (AB) is one of the edges in a tree graph (a)
which is a set of connected N —1 edges linking N points, @4, ..., &y without making
any loop. All the distinct tree graphs are labeled by (a) and “labelings” indicate
(V)

a

each tree topology (a). If QW) = 0 for all N > 3, the hierarchical model reduces to
random Gaussian fluctuation. Fry & Gaztanaga (1993) showed that the local bias

the symmetric sum with respect to the N-points (Fry 1984). Q") are constants for

which can be expanded as Taylor series by density contrast ¢ of background field,

o0

Cl/
pp(6) =" k—’;ék, (4.4.35)

k=0

leads the hierarchical form (4.4.34) of biased field in the leading order of (@), In
this argument, the coefficients a, are assumed to be the zero-th order of (). This
argument can not be applied to biasing by sharp clipping (4.3.21) because sharp
clipping can not be expanded as Taylor series. Moreover, even if we approximate the
sharp clipping by some smooth function, it is a function of /¢ and the coefficients
a’, are no longer the zero-th order of ¢ ~ O(0?). We complement, in the following,
Fry and Gaztanaga’s argument by investigate the case biasing is a local function of
normalized density contrast 6/ which has not to be expanded as a Taylor series as
in the sharp clipping bias or in density peaks in the approximation of the preceding
section.

In the following, the background field « is identified with the normalized density
contrast 6 /0. The field 6 is also assumed to satisfy the hierarchical model (4.4.34).



118 4. BIASING AND STATISTICS IN THE UNIVERSE

00— /LI IN

Figure 4.10: Diagrams for hierarchical underlying fluctuation.

Figure 4.11: Definitions for tree graphs a, 3, 7.

The j-vertex, in this case, contributes the order ¢/~ and we need not to consider
any vertex if we only consider the leading order in o. Evaluating diagrams in Figure

4.10, the following results are obtained to the leading order both in o and ®):

Pr = Ro, (4.4.36)
) Ry
{12 = E Y12, (4.4.37)
R:R
51(33,)123 = #32(1/)1211)23 + cyc.), (4.4.38)
0
 _ B{R} R?Rs

(¢12¢13¢14 + sim.(4)).
(4.4.39)

B,1234 — Ri (t12tP93tP34 + sim.(12)) + R—él

The higher orders of 1 is omitted for we are interested in large-separation

limit. Thus, the parameters Qg?i of hierarchical model of a biased field are

RoR
QL) = =2, (4.4.40)
k] Rl
RZR R2R
B B 3
Ql(hﬁ) = 0R1427 Ql(l,'y) = %13 9 (4.441)

to leading order. The indices of tree graphs «, 3, v are defined in Figure 4.11. For
arbitrary NN, it is obvious from above calculation that fl(gN) satisfy the hierarchical

model to leading order in 51(32) ~ O(c?) and, moreover, the parameters QEV]?L can be
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directly obtained from the topology (a) by simple rules as follows: let m; be the
number of external points which is attached by j lines in a connected tree graph (a)

(Z;m; =N, ¥ gm; =2(N —1)), then

R —2(N-1) 'R'm] B B .
QY = (—1) I A7 S ATEITT A, (4.4.42)
where A; = R;j/Ry. In the biasing by sharp clipping, equation (4.4.22) is applied.
In the biasing by density peaks, equation (4.4.23) is applied in the approximation
of the preceding section. In high v limit, both biasing via sharp clipping and via

V—00 m

density peaks have the same behavior, A, (v) — v™, and always Qg\]?()l =1.

4.4.5 Gravitational evolution as nonlocal biasing

In our formalism, the gravitational nonlinear evolution of the density field can be
seen as a kind of nonlocal biasing from the initial fluctuation field. In this section, we
give explicit relation between our formalism and the perturbation theory of gravita-
tional instability and apply our formalism to the calculation of correlation functions
of density field. We consider the non-relativistic collisionless self-gravitating system
in the fluid limit for Einstein-de Sitter universe (2 = 1, A = 0, p = 0) as an example.
The mass density contrast 6(x,?) and the peculiar velocity field v(@,t) are governed
by the equations (Peebles 1980):

26 1

5 V0o =0, (4.4.43)
Jv a 1 1

s E(” Vv + ~Vo =0, (4.4.44)
Né = ArGpa®s, (4.4.45)

where V denotes the derivative by means of comoving coordinate @, p and a(t)
are the average density and expansion factor, respectively, and are given by p =
(67G1?)7!, a o< 1*/* in the Einstein-de Sitter universe. The linear solution is derived
by linearizing equations (4.4.43)-(4.4.45). The growing mode of the linear solution

has the form,

50 (2, 1) = (;—Y)Q/S (@), (4.4.46)

where ?, is initial time or recombination time, e(@) is interpreted as the primordial

fluctuation. The second order perturbative solution for growing mode (Peebles 1980)



120 4. BIASING AND STATISTICS IN THE UNIVERSE

is given by
4/3
50 (@, 1) = (;) {%62(;13) +Ve(e) - VU () + % 0,:0;U(2)] [aiajU(a;)]},
' (1.4.47)
where | ()
Uz) = —E/dg’x’m e (4.4.48)
The mass density,
ppt(@, 1) = p(t)[1 + 5(1)(;13, ) + 5(2)(;13, t) + O], (4.4.49)

is regarded as nonlocal biasing where the background field « is identified with nor-

malized primordial fluctuation €/, where 02 = (€?). The kernels are derived to
be
KO = p(t), (4.4.50)
t 2/3
KW(2) =0 (?) (18 (@) + O(c), (4.4.51)

£\ 473 10 1 06°(z) dly| ™!
’(2) = 2= 0 —4° ’ s
KP(w,y) =0 ( > ) [ 7o @)~ dui Oy

lr
1oy oIt 1 Pl Pyl
47 Oy, 0x; 2872 81’281‘] 8y¢8yj
K™ =0(")  (n>3), (4.4.53)

+ O(c"), (4.4.52)

which are nonlocal. Using these kernels, and assuming that the primordial fluc-
tuation e is Gaussian, our rules A-i) ~ A-vi) for two- and three-point correlation

function give the following results after lengthy algebra:

t 4/3
S, mait) = (;) Ein(r12) + O(0), (4.4.54)
1 8/3 2
Cot(r1, 7o, P3t) = (t_> Il?(5 + 2 cos® 02)&in(r12)&in(raa)
! Jin / Jin
+ cos b, lgm(rmzz?’ (723) n fln(r23223 (7“12)]
23 12
4 2 I3 (r12) I3 (r23)
= Oy — 1
+ - {3(3 cos” b, ) 7
+ (1 — 3 cos® 6;) [fin(hz:i?, (r23) + 5in(r232<3]3 (712)] }ﬂ
23 2

+cyc.(3 terms) + (’)(06). (4.4.55)
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In the above, the two-point correlation function of the primordial field is

En(r12) = (e(r1)e(ry)) (4.4.56)

where 112 = [Py — 73]; 03 is an angle between two vectors, r; — 7y and r3 — ry;
and J(r) = [Jdr?&,(r"). Recently, Bharadwaj (1994) independently obtained
the same result for three-point correlation function (4.4.55). Putting &, o r™» in
equation (4.4.55), we rederive Fry’s result (Fry 1984). For equilateral configuration,

ri2 = a3 = ray1, the hierarchical amplitude, Q,; = Cpt/(3§§t) is

1892, — 89 + 102
7(3 — )?

Qpi(equilateral) = (4.4.57)
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Summary

In this Thesis, we deal with several topics from author’s recent work mainly on the
relation between mechanisms of structure formation and statistics. The pattern of
large-scale structure of the Universe provides invaluable clues to both the nature
of the primordial density fluctuations and their evolutionary processes. Therefore
quantifying the large-scale structure of the universe rigorously is of fundamental
importance in understanding the physics in the universe. We consider observable
measures of galaxy distribution in the universe and study how these measures depend
on initial fluctuation and how they evolve under gravitational instability. We employ
some strategies to this subject, i.e., numerical method (section 3.2), semi-analytic
method (section 3.4), analytic method (section 3.3, 3.6) and calculating formulation
(chapter 4). In the below, the summary of what we found in previous chapters and
further discussion is presented.

In chapter 2, the some basic concepts and methods to investigate the evolution
of our universe are presented. Perturbation theories are only methods that enable
us to investigate the nonlinear evolution analytically in general situation. As the
survey volume of distribution of galaxies will be enlarged, the weakly nonlinear effect
which is tractable by perturbative method will becomes one of the main subjects of
investigation. As is shown, the weakly nonlinear effect is not sensitive to the cos-
mological parameters, () and A, in intersted ranges. Thus, comparison of data and
perturbation theories in a weakly nonlinear regime provides the test of gravitational
instability almost independently of the poorly determined {2 and A. Skewness, prob-
ability distribution function and topology in a weakly nonlinear regime are among
such directly observable quantities.

In chapter 3, the dynamical evolution of correlation functions and statistics of
isodensity contours are explored together with the important effect, redshift con-

tamination, to these measures.
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In section 3.2, we compute two-, three- and four-point correlation functions in
several cosmological models, and explicitly examine their departure from the hierar-
chical clustering ansatz (3.1.9) by treating separately the different triplet and quartet
configurations. We find that the ansatz holds in almost all scales in these models
approximately, but that there exists a weak but clear departure from it in a strict
sense. The degree of this departure sensitively depends on the shape of underlying
fluctuation spectrum, and also on the specific triplet and quartet configurations.

We also look for a possible effect of the peculiar velocity field which should per-
sist for all catalogues from existing and future redshift surveys. In the case of an
LCDM model, we find that the ansatz (3.1.2) for three-point correlation function
holds remarkably in redshift space even though it is clearly broken in real space.
The ansatz (3.1.4) for four-point correlation function holds better in redshift space.
Therefore the results from the observations should be interpreted with caution. Al-
imi et al. (1990) and Maurogordato et al. (1992), for example, analyzed the CfA
redshift survey or the SSRS (Southern Sky Red Shift Survey) data and found the
evidence that the scaling law (3.1.6) holds by the method of count-in-cells. Never-
theless our results indicate that their conclusion should not be directly extended to
the real space distribution. It is quite possible that the scaling law holds very well
simply due to the redshift space contamination.

It is interesting and important to stress here that all the present findings are in
complete agreement with the previous count-in-cells analysis by Lahav et al. (1993).
In fact, they found the similar dependence of skewness and kurtosis on the degree
of the density inhomogeneity. Since their analysis mostly used the cubic sampling
volume, it would mix up several triplet configurations considered above, but would
mostly correspond to our [1,1,1] shape. Then in the case of LCDM in particular,
the tendency that () increases as the fluctuations become more inhomogeneous is at
least qualitatively consistent with their finding on the behavior of skewness. Also
they found that skewness tend to behave like a constant in redshift space as we find
for ()s. Let us emphasize that this behavior would not be detected when averaging
out over the triplet configurations; the probability that all the three separations of
a triplet fall in small separation bins where the deviation from the scaling is most
remarkable, is very small, and thus it is not easy to detect the scale-dependence
properly.

Although we have shown that the hierarchical clustering ansatz (3.1.9) is weakly

broken in a systematic manner, it is of great value to examine the extent to which the
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ansatz extends to the higher-order correlation functions even if in an averaged sense
as argued here. Also of interest is the three-point correlation analysis of clusters
of galaxies (Téth et al. 1989; Gott et al. 1991) and its comparison with theoretical
predictions. The latter issue was explored by Watanabe et al. (1994).

In section 3.3, several statistics of isodensity contours are considered including
genus statistics, 2D genus statistics, area statistics, length statistics and level cross-
ing statistics. The dynamical evolution of these statistics is analytically evaluated
by second order perturbation theory of gravitational instability.

As seen by equations (3.3.17)—(3.3.19), the nonlinear correction of first order in
o generates asymmetry between high-density region and low-density region in the
symmetric or anti-symmetric curve of the statistics as functions of the threshold.
The pattern of the asymmetry in the curve of smoothed density field depends on
initial power spectra. Thus, in principle, observations of the curve can restrict the
properties of initial fluctuation, such as Gaussianity, the shape of the spectrum, by
the amplitude and the pattern of asymmetry of the curve. The presently available
redshift data of galaxies are not enough to have the statistically sufficient accuracy
on isodensity-contour statistics of the large-scale structure. The projects as Sloan
Digital Sky Survey (SDSS), however, will enable us to have a large amount of redshift
data in near future and the analysis indicated in this section will be important one.

The effect of biasing between the galaxy distribution and the matter distribution
on the genus curve is an important issue. Quite generally, the correlation functions
arose from local bias approach to the hierarchical model in the large-scale limit
(Szalay 1988; Fry & Gaztanaga 1993; Matsubara 1994d; section 4.4). The parameter
() in hierarchical model is determined by individual biasing mechanisms. The effect
of biasing on the genus curve is approximately expressed by equations (3.3.17)-
(3.3.19).

In section 3.4, we derive a formula (3.4.9) connecting N-point correlation func-
tions in real space and in redshift space on small scales, first neglecting velocity
correlations. Then we propose a modified model (3.4.27) which partially takes into
account the effect of velocity correlations. Using the above model (3.4.9) or (3.4.27)
and the models for correlation functions in real space and for velocity distribution,
we give analytic expression for direction-averaged two- and three-point correlation
functions in redshift space. We find that the correlation functions are systematically
lower in redshift space: when the power-law indices for two- and three-point corre-

lations in real space are —v and —2~ respectively, the redshift space counterparts
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are 1 — v and 2 — 2y respectively on very small scales (equations (3.4.37), (3.4.44)
and Figure 3.14. The hierarchical structure (3.1.2) is roughly preserved on all scales.
We conjecture that when the power-law indices for N-point correlation function in
real space is —(N — 1), the redshift-space counterpart is N —1 — (N — 1)y on very
small scales and hierarchical structure (3.1.9) is roughly preserved on all scales.

These analyses are compared with N-body simulation data, SCDM and LCDM
models, which proved good agreement between directly calculated correlation func-
tions in redshift space in simulations and the above velocity-correlation-modified
model. Although there are many approximations for velocity correlation adopted
in the present model, our model turn out to successfully explain the redshift space
distortions in correlation functions. The best fitted values o5 and o3 are obtained
in each model and the property o3/0, ~ 1.7 is found independently of cosmological
models and velocity-distribution models f,(v). As noted in section 3.4.3 (just below
the equation [3.4.23]), the difference between the values oy and o3 is interpreted to
be the difference of expected potentials so it would be interesting if the ratio o3 /05 is
fairly independent of cosmological models or detailed forms of velocity distribution
functions.

In section 3.6, the redshift distortion of statistics of isodensity contours are exam-
ined using linear perturbation theory. We show directly that the redshift distortion
affects only on amplitude of the statistics as functions of density threshold. the
redshift distortion is fairly weak for genus and area statistics for interested values
of Qb=%/3. One can, therefore, use redshift data for Gaussianity test of primordial
fluctuation as if the redshift data represent the real space distribution.

Quite interestingly, the direction dependent statistics, i.e., 2D genus, length
statistics, level crossing statistics are fairly dependent on Qb=%/ and the direction
to defining the statistics. These dependences provide ways to determine the density
parameter of our Universe from redshift data.

In chapter 4, we develope a formalism to explore the statistics of biased field in
large-scale structure of the universe. In particular, the general nonlocal biasing can
be treated in this formalism. The underlying field is not necessarily assumed to be
a random Gaussian field. The formalism is based on diagrammatic series expansion
of the correlation functions of a biased field. As for local biasing, the form of series
expansion of a biased field is known by previous works, but it is very complicated
expression (Borgani & Bonometto 1989, 1990). Our formalism, when applied to
local biasing problem, simplify this complexity.
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In quantum field theory and statistical physics, the Feynman diagrams play roles
more than mere simplification of calculations. It would be interesting if our formal-
ism could play similar roles. In fact, our diagrammatic expansion can be conceived
to be the generalization of the Edgeworth expansion which is useful in connecting
dynamics and statistics in large-scale structure by the argument in section 4.4.

We apply our formalism to the problems which have been studied previously to
show the effectiveness of our method. Application to peak statistics improves the
technique developed by Bardeen et al. (1986). In particular, we can evaluate the
higher order correlations of peaks successfully for which technique of Bardeen et
al. had difficulty. For statistics of weighted extrema, which could be an approxima-
tion to peak statistics, we show the general way of calculation not depending on the
high-threshold expansion. Weighted extrema is observable in surveys of large-scale
structure and our result can be directly compared with observations. The similar
technique is applied to the isodensity statistics of weakly non-Gaussian field in sec-
tion 3.3. The conservation of hierarchical model of correlation functions subjected
to local biasing, which is studied by Fry and Gaztanaga (1993), is revisited using
our formalism. We complement their results by investigating a local biasing through
normalized density contrast which may not be represented by Taylor series, as in
sharp-clipping biasing. The gravitational evolution of primordial fluctuation also
falls under the category of nonlocal biasing.

Those problems have been studied individually so far. Our formalism enables
more detailed examination of those problems. Those examples show that our formal-
ism is not only a general method but also a practically powerful way to investigate
various problems. The formalism developed in chapter 4 may be an influential
method for future investigations of large-scale structure of the universe.

As a concluding remark, it is important to stress that which statistic is the most
suitable for quantifying the pattern of large-scale structure of the universe can not
be determined. The answer of this question depends on the initial fluctuation and
the mechanism of structure formation which are indeed what we want to investigate
through the pattern of large-scale structure. Although the hierarchy of correlation
functions provides the complete description of the statistical properties of large-scale
structure, it is practically difficult to determine accurately higher order correlation
functions from observations. So we need alternative statistical measures to further
discriminate various cosmological models. Count-in-cells statistics, void probabil-

ity functions, probability distribution functions, fractal analysis, cluster correlation
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functions and isodensity-contour statistics are fairly popular measures. In the com-
parison between theory and observation, these statistical measures are inevitable
tools. The correct theory of structure formation in the universe must passes statis-
tical tests using these measures. The redshift data of galaxies are extending rapidly
so there is no doubt that the confrontation between theories and observations in the

near future will bring us a new exciting stage of investigations of our Universe.
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Appendices

A THE PROOF OF THE CUMULANT EXPANSION THEOREM

In this appendix, the proof of the cumulant expansion theorem is shown. We consider

the general random variable, ¢y, ¢,..., which is not restricted to have the zero-

mean. These variables are not necessarily all different, but can be overlapped.
Especially in the case of a single variable, ¢1, ¢,... represent the same variable.
The cumulants (¢1¢; - - - ¢n) . are defined from the moments (¢, ¢, - - - ¢n) iteratively

from the following equations:

(¢1) = (¢1).,
(P102) = (1) (¢2). + (S192).
(016265) = (¢1). (d2)c (P3)c + (P1)c (P203)c + (P2). ($301). + (P3) (D162).
+ (¢16203). (A.3)
(P1020304) = (1) (D2). (03), (P4). + ($102). (93). (¢4). + sym.(6)
+ (0102), (¢304), + sym.(3) + (¢1), (d20304), + sym.(4)
+ (P1¢20304), , (A4)

where sym.(n) means the addition of terms to symmetrizing the previous term re-
sulting in n terms in total. As is obvious from above equations, the cumulants are
interpreted as true contribution to correlations. The contribution from the lower

order moments are eliminated in cumulants. The general expression of above equa-

tions is
(P12 = > I <H ?; > (A.5)
grouping groups (a) \i€la
where 3~ ouping Means the summation for all the possible ways of grouping variables,
o1, P2, . .., a is an index of groups for a fixed grouping, and [, is the set of indices of

the variables in a group «. Since ¢; appears once in the left hand side of equation

129
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(A.5), the cumulant (¢; - - ¢n), is linear for each variable ¢;:

(6r-(6;+6)) - on) = (b1 bn)o + (1 8fwow) . (AS6)

as easily seen from induction.

The N-moment for a random variable ® is, from equation (A.5),

(@MY= 3 TI(e™),, (A7)

grouping o
where n, is the number of elements in a group a. Let m; be the number of groups
which has n, = j elements for a fixed grouping. Note the condition }>; jm; =
N. Some different grouping give the same set of numbers, (my,ms,...). Using
the number of redundancy n(my, my,...; N) of this correspondence, equation (A.7)

reduces to

(V)= ¥ -8 (N— ijj) n(mi,ma, . N) (@) (02)™ (92)
T)’L1:0 T)’LQ:O ]

(A.8)
where 6(m) is either 1 if m = 0 or 0 if m # 0. The number of redundancy n is the
product of the number of ways to divide N objects to groups of my,2ms,3ms, ...
elements and the number of ways to divide jm; elements in each group to subgroups

of j elements:

N! (ym;)! 1
LN) = I NI ————. (A
n(ma,ma,.. 5 ) m1!(2m2)!(3m3)!---Xl;[mj!(j!)mj gmj!(ﬂ)mj (A-9)

The following equation is derived from equations (A.8), (A.9):

(") = i % = exp (i %) . (A.10)

Setting ® = —iJ¢ in equation (A.10), the cumulant expansion theorem for a

single variable is obtained:

: o~ (=) v
In {(exp(—iJ¢)) = Nz_:l L <¢N> (A.11)
Setting ® = —i)°; J;¢; in equation (A.10), the cumulant expansion theorem for

multiple variables is obtained:

ln<exp (—izj:J]’qﬁj)>— Z ]\Z[), Z Zjn" in (8 Din) - (AL2)

=1 J
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Setting ® = —i [ dxJ(x)é(x) in equation (A.10), the cumulant expansion theorem

for a continuum variable is obtained:

In <exp (—Z/d$J($)¢($))>
_ & (=)

= /dxl---/deJ(:cl)---J(xN)<q§(:1;1)---</$(:1;N)>C. (A.13)

N=1

The cumulant expansion theorem is extremely important because the cumulants
which are defined order by order are simply related by a single equation through
generating functions.

As an illustrative application of the cumulant expansion theorem, let us calculate
the cumulants ¢y for a single variable of zero mean in terms of moments py. From

equation (A.11),

aN
cy = —In <et¢> (A.14)

- OtN

Evaluation of this equation provided gy = 0 is straightforward. We list below the

t=0

first ten cumulants for use:

c =0, (A.15)
Cy = fig, (A.16)
c3 = fi3, (A.1T7)
Cy = g — iy, (A.18)
cs = ps — 10pap3, (A.19)
ce = e — 1op2pu4 — 1002 + 30p3, (A.20)
cr = pir — 21 papus — 35pspuy + 21003 s, (A.21)
cg = g — 28ptaftg — DOpuapd — 35 ¢ + 4200 g + 560paps — 6304, (A.22)

Co = o — 36papr — SApapie — 12645 4+ 75645 is + 2520 o papis + 56043
— 756013 13, (A.23)

10 = firo — 4B papis — 1203 — 210 pe + 126045 pe — 1267 + 50400135
+3150p5pf + 420003 g — 1890045 1y — 37800p7 13 + 22680u. (A.24)

In astrophysical applications, the density contrast p/p — 1 (p is the density at
some point and p is the average density) is taken as a random variable with zero
mean. The parameter Sy = cx/c) ™" is often used in analyzing astrophysical density

fields. S5 is called skewness and S is called kurtosis.
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B EXPECTATION VALUES OF PRODUCTS OF GENERALIZED WIENER-
HERMITE FUNCTIONALS

Imamura, Meecham & Siegel (1965) gives the method to calculate symbolically the
expectation values of products of Wiener-Hermite functionals. In this Appendix, we
generalize their method to the case of generalized Wiener-Hermite functionals. The

quantity we need to calculate is

<f[1H<mi> (wﬁl)v---,wﬁm"))> : (B.1)
= G

To derive the method to calculate this quantity, there are at least two ways, i.e., using
operators and using generating functionals. We present both ways here although

either is sufficient to our purpose.

B.1 The method using operators

The method using operators is to use the operator representation of generalized
Wiener-Hermite functionals. This method is similar to the derivation of Feynman
rules in operator formalism in quantum field theory.

We define the annihilation operator a(&) and creation operator a'(x) as

o) = 3 [ 07 @ y)oly) + 5 B2)
i(w) = gola) = [yl (B.3)

Annihilation and creation operators transform as covariant and contravariant vec-
tors, respectively under the linear transformation (4.2.19). These operators indeed

satisfy the following commutation relations as annihilation and creation operators:

a(@),al(y)] = (= — ), (B.4)
la(2),a(y)] = |ai(2),dl(y)] = 0. (B.5)

In terms of annihilation and creation operators, the generalized Wiener-Hermite

functionals are represented by
Himy (@1, @) = 2T [al@:) + a'(22)] 2, (B.6)

where

i@) = [ dyolz,y)ay) (B.7)
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is a contravariant vector. The notation : - -- : means the Wick product (Wick 1950):
place all the annihilation operators to the left of all the creation operators in the

Wick product. For example,

ale) + o'(@)] [a(y) + ' (y)] - = dl@)ily) + dl)al (y) +Aly)a' (@) +a'(2)a(y).

(B.8)
and so on. The representation (B.6) is proved by induction using the recursion
relation (4.2.23).

We then define the “vacuum state” |0) as
0) = {Pala]}', (B.9)

where Pgla] is an infinite dimensional Gaussian distribution functional given by

equation (4.2.24). The “n particle states” (n > 0) are defined using vacuum state

as
|£131,...,£13n> = CLT(;BI)-"CLT(QZ”)|O>7 (BlO)
which are the bases of the Fock space F. The following properties hold for n particle
state:
al(y)|ey,...,e,) = |y, 21,...,2,), (B.11)
a(y)|0) =0, (B.12)
a(y)le,...,x,) = Z Sy —x)|®er, .. Ty, Ty, .., 2,). (B.13)
=1
We define the inner product of n particle state |@,...,@,) and m particle state

|Y1,...,Y,,) in the Fock space F by

(®1,... 2.y, Y,,) = 5nm/d32’1 v d? T @y, 21) 0T (@, 20)

></[da]|z1,...,zn>|y1,...,yn>, (B.14)

where we employ Dirac’s notation for the inner product. The annihilation operator
and the creation operator are Hermite conjugate to each other under this definition
of the inner product in the Fock space. The inner product (B.14) can be calculated
explicitly by commutation relations (B.4), (B.5) and the properties (B.13) resulting

in

(@1, @y, oy, = (0 |a(@) - a(@n)al(y,) -+ al(y,,)]0)
= b |01 —yy) - (2 — ) Hsymu(yy,y)|, (BD)
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where sym.(y,,...,y,) represents the symmetric summation of the previous term
with respect to y,,...,y,. If Fa,a'] is a e-number, i.e., the operator which simply

multiplies the real number to the operand, then

(Fa,a']), = (0|F [a,a']]0). (B.16)

The quantity (4.4.53) is, after all, represented as

<ﬁ Hm;) (;13;1), . ,wgmj))>
j=1 G

. <0 T (o17) + f (27)] oo T (o17) o (o) :‘0> (B17)

Expanding the products in r.h.s, and using the commutation relations (B.4), (B.5)
and the properties (B.11)-(B.13), this quantity is calculated algebraically. But more
convenient diagrammatic calculation can be introduced. The “particle” created by
a creation operator should be annihilated by an annihilation operator placed left of
that creation operator. In a single H,,,) represented by Wick product, the creation
operators are already placed to the left of annihilation operators, and the “particles”
created in some H,,,y can not annihilated by the annihilation operator in the same
Hm;)- These observations show the following diagrammatic rules for calculating
equation (B.17):

(1) (mj)

]' 7...733]'

i) Corresponding each H,, ), draw m; points labelled by @

ii) Make )~ m;/2 pairs out of those points such that the two points in the same
Hm,) are not paired. If 3°,m;/2 is an odd number, the equation (B.17)

vanishes.

iii) Associate factor ;/)(a:gp),a:éq)) for each pair, ?) and a:l()q) and make products

of these factors.

iv) Sum up those products obtained from all the possible pairings.

For example, the quantities,

(Hoy(@ oy (y)He (2,w0)) (B.18)

are evaluated by the diagrams in Figure 5.1. Applying the above rules we obtain
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Figure 5.1: An example of diagrams for expectation values of products of generalized Wiener-

Hermite functionals.

P, 2)P(y, w) + (2, w)y(y, 2). (B.19)

When the generalized Wiener-Hermite functionals of type H(™) are contained in the
Lh.s. of equation (B.17), the factor ¢(2®), a:l()q)) or 63(al) — a:l()q)) or ;/)_l(a:gp),a:éq))
are associated for each pairs and which factor should be associated can be determined
by the fact that the result should be transformed correctly under linear transforma-
tion (4.2.19).

The following orthogonality relation can be derived by the above rules:

<H(n)(w17 s 7wn)H(m)(y17 s 7ym)>G

B.2 The method using generating functional

The second method using generating functionals is to derive rules i) ~ iv) using
generating functional of generalized Wiener-Hermite functionals. This method is
similar to the derivation of Feynman rules in path integral formalism in quantum
field theory.

The generating functional of generalized Wiener-Hermite functionals is defined

by
< 1
Glo,J] = % ﬁ/d3:1;1---d3me(m1)---J(wm)H(m)(wl,...,wm), (B.21)
m=0 °

so that
6" Gla, J]

o0J(xy) - 0J(x,,)

H (2, .. @,,) = (B.22)

J=0

We consider the following functional:

P = a] = exp {5 [ @yl (@) - a@) (@)l () — aw)]}, (B2



136 APPENDICES

and expand this functional with respect to J:

FlJ —a] = ﬂ%%/f“ B () T (@) 5{](‘;”3’.[{ gJO(éLm) R (B.24)
Because
0" F[J — a (<1 0" F[J — o
oJ(@y1) - 0J(®m)|,_, N ba(@y) - da(@m) |5,
(<1 5@(333 f[g‘i(wm) - FlalH™ (@1, @), (B.25)
Gla, J] = %

= eXp{—%/dedByJ(w)@b‘l(w,y)J(y) +/dedBya(w)@b‘l(w,y)J(y)}- (B.26)

Using this representation of generating functional, we can derive the following equa-

tion:
(Gl A1~ Glor L] = ex0 [z [ eyt e y)J]'(y)} )
i<
The rules i) ~ iv) are derived by operating

5 .
0.J; (wgl)) A (wgﬁu)) e 5., (wgl)) WA (wgm)) )

to the both side of equation (B.27), and putting J; = J, =--- = J, = 0.

(B.28)

C THE CALCULATION OF THE STATISTICAL FACTOR

In the expression (4.3.5) the points associated with H(”l"'"'""”m),?‘((mi) are classified
into m+ N groups with ny,...,n,,;mq,...,my members respectively. These points
in each group are symmetric about permutations. We distinguish these m+ N groups
by labels like «, 3, and so on. In evaluating the Gaussian average of the product
of generalized Wiener-Hermite functionals using diagrammatic method described in
Appendix A, we denote the number of lines connecting the members of two groups
a and 3 as a symmetric matrix M,z with vanishing diagonal elements. Obviously,
graphs which have the same value of the matrix M,z give the same contribution to
Py. Thus we need to calculate the degree of multiplicity of the graphs which have

the same value of M.
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We designate the number of points in a group « as M. The number of ways to

divide the M, points into M, y,..., M, ,,+n parts for all groups a’s is

T M.

5.
) Maﬁ!)
alf

The number of ways to connect these points is given by [], 5 Mas! and thus the

(C.1)

E——
o Moz,ll"'Moz,m—I—N! B (

multiplicity of the graphs is

nyleongtmy !l omp!

(C.2)

H Qends

ends
The numerator cancels out in equation (4.3.5) and the statistical factor
1
I C.3
m! H n,! (C-3)
identical

lines

follows. It is obvious that the m vertices are distinguished in the above evaluation.
We can further take the indistinguishability of the same kind of vertices into account.

This corresponds to multiplying

S (C.4)
H ny.
identical
vertices
and the statistical factor
1
C.5
H nL! H n\/!7 ( )
identical identical

lines vertices

follows.

D EVALUATION OF R®¥(y)

This Appendix is devoted to the derivation of equation (4.4.15). The following

identity is convenient for our purpose:

2 . 2
e =)

(z —yy)?
2 " 2(1—12) 2(1—2) (D-1)

2
_vy, |
2 21— )
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From this identity, equation (4.4.8) reduces to

l @—7@1
exp | —————
1 oo 2 2(1 —~?)
N () = | d < /2 D.2
pk (l/) (QT)QRE o l’f(l’)e [27‘_(1 . 72)]1/2 ’ ( )
and the integral in equation (4.4.7) can easily be calculated:
@y L /“d —2 /2 e | LT D.3
00 = G e e | L) (D.3)

The latter expression (D.3) was previously derived by Mann, Heavens & Peacock

(1993). Differentiating equation (D.2) and using the identity (D.1) again, we obtain

d m—1
(—5) M) =

_2
61//2

RN~
for m > 1. Thus,

/0 " de f(2)Hyp ( i ) exp [—M] L (D.A)

O

1 o vV — AT
— de f(z)e " Perfc Y=t m=10
SﬂRaé /(@) ( @Tj;a) ( )

o - vae\ [
(27T>5/2Ri’(1—72)m/2/o Ao f{) i 1—7>6Xpl 2(1—72)] b=
(D.5)

is proved.

E PROOF OF (&) = N\ (v) /0l (v)

P

In this Appendix, we calculate (&) defined by equation (4.4.19). Using the identity
(D.1), the equation (4.4.19) reduces to
l(a—vwz

—~ 1 X g (e N 2(1—72)]a—7x
= @ b ] e e (5

The integration with respect to « is straightforward by a transformation = a—~z.
Comparing the result with equation (D.2), this quantity has the simple form,
L Mw)
(@) =~

Dok (v) ‘

(E.2)
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F DERIVATION OF COEFFICIENTS FOR DENSITY EXTREMA

In this Appendix, we derive the coefficients (4.4.26). The quantity we should calcu-

late is
Rk, {:}, {Pii}) = ) |
()1 () H (5] ot = 1P et ) (1)

G

_ _(T/ daﬁdﬂ gdw” expl ;ZA (M‘I)WAU]
ﬁ( a”)p” det w, (F.2)

y O*0(a —v) & 9"6(5;)

dak g

where ten dimensional vector A, is

(Au) = (017 By B2, 53701117W227w337(~0237w137(~012)- (F3)

The correlation matrix M,, = (4,4,) is explicitly

! of |-Z1f| of
O UlI O O
M: UQVT 300 o2 9 (F4)
Oy O O %I
where
0 1 0 0 0 1 00 31 1
Oy=|0|,Iy=|1],0=|0 0 0, I=|010|,B=|131].
0 1 0 0 0 0 01 1 1 3
(

F.5)

This is the consequence of spatial homogeneity and isotropy (see Bardeen et al. 1986).

We introduce new variables ©;; as

(F.6)

Wi; = Wiy + 62

3
then the non-vanishing correlations among variables «, 3;, @;; are

2
01

<O‘2> =1, <512> = <52> <53> 352

s
2
~2 ~2 ~2 P 5 2)
= = [ 1 _ _
<w11> <w22> <w33> 552 ( 9
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P P2 P33z P piz piz | Jo i o Js3
0 0 0 0 0 0 10 0 0
1 0 0 0 0 0|0 1 0 0
0 1 0 0 0 0|0 1 0 0
0 0 1 0 0 0|0 1 0 0
1 1 0 0 0 010 0 1 0
1 0 1 0 0 010 0 1 0
0 1 1 0 0 010 0 1 0
0 0 0 2 0 oj]0 0 -2 0
0 0 0 0 2 oj]0 0 -2 0
0 0 0 0 0 210 0 =2 0
1 1 1 0 0 010 0 0 1
1 0 0 2 0 010 0 0 =2
0 1 0 0 2 010 0 0 =2
0 0 1 0 0 210 0 0 =2
0 0 0 1 1 1 0 0 0 2

Table 5.1: The definition of J;. For other values of p;; not listed in this table, J; = 0.

-~ ~ ~ ~ -~ o3 5,
(011022) = (W2ats3) = (W110033) = (1 - 37 > )

2
Ty

<5J122> = <5J223> = <5J123> = @7 (F7)

0

and all other correlations vanish. The coefficients (F.1) is represented by new vari-

ables, a, i, w;; as

R(k, {1}, {pii}) = - <ﬁ alié(ﬁi)>e <ak9(aoék_ 11 (agij)pw W(a’&)>g’

l;
where

~ of ’ 3 of e ~ ~ 2

W(a,0) = — (Q) a” + (?) (11 + @2 + W33)
0 0

i

3o¢

~ o~ o~ ~ o~ o~ ~ ~2 ~ ~2 ~ ~2
+011Wa20s3 + 2W3w13W12 — W11Wo3 — WaaWi3 — W3sWyy. (FQ)

_|_

~2  ~2  ~2 o~ o~ ~ ~ -~
(w23 + Wis + Wiy — WooW33z — Wi1W33 — (.U11CU22> «

We see, from equation (F.9), that the equation (F.8) survives only when integers
pi; take the values listed in Table 5.1. Using J;({p;;}) defined by Table 5.1, the

multivariate Gaussian integral by @ of the second factor of the equation (F.8) reduces
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to
52 \ 3 Lo 0"0(a — v
() T (T () - Hale) ()
() I({p)) — b ) - (F0)
G
Defining
H_1(v) = £6”2/Qerfc (%) , (F.11)
we find o0 ) |
vuiae—v) L —v2/2
< dak Hn(a)>(} \/%Hk-l-n—l(l/)e ’ (F'12)
for n =0,1,2,.... The first factor of equation (F.8) is
1 (on] _Zi =3
() T momomo, (F.13)
where (I odd)
0 : odd),
Hi(0) :{ (—1)/2(1 = 1)1 (I: even). (F.14)
Therefore, we finally get the explicit form of the kernels:
1 o1 B_Zi li_QEz‘gJ Py
Rk, {0}, {pi;}) = Hy, (0)H,,(0)H, (0
(0. ) = s () (O (0)H,0)

< e [Hyga(v) Jo({pis}) — Hir () i ({pis })
+Hy(v)J2({pi;}) — Hea(v) Ja({pi;})] . (F.15)
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